519 research outputs found

    Cenários para a matriz de geração de eletricidade do Ceará em 2050: pt

    Get PDF
    Based on the worldwide proposition of energy matrix scenarios for 2050, the objective of this article is to present scenarios of electricity generation for Ceará in 2050, showing the participation of sources already used in the state's electric matrix and adding new ones. The article proposes three scenarios: a conservative one, where the present proportion of electricity generation sources of the state is maintained, a transitional one, with 50% of electricity generation from non-renewable sources and the other 50% from renewable sources, and 100% renewable, without the use of fossil or nuclear fuels. Estimates for 2050 in the state are obtained by extrapolating generation data from 2011 to 2017, reaching an estimated 94,775 GWh. In the conservative scenario, it is observed that half of this generation is made by thermoelectric plants and the other half by wind farms. In the transition scenario, dominated by the use of natural gas, the exponential growth of photovoltaic generation stands out. In the 100% renewable scenario, dominated by wind farms, in addition to the similar growth of photovoltaic generation as in the transition scenario, we highlight the use of urban solid waste and solar thermal concentration plants.A partir da proposição de cenários de matrizes energéticas a nível mundial para 2050, o objetivo do presente artigo é apresentar cenários de geração de eletricidade para o estado do Ceará em 2050, mostrando a participação de fontes já usadas na matriz elétrica do estado e acrescentando novas. O artigo propõe três cenários: um conservador, onde é mantida a proporção atual das fontes de geração de eletricidade do estado, um de transição, com 50% da geração de energia elétrica oriunda de fontes não renováveis e os outros 50% provenientes de fontes renováveis, e um 100% renovável, sem o uso de combustíveis fósseis ou nuclear. As estimativas para 2050 no estado são obtidas através de extrapolação de dados de geração de 2011 a 2017, alcançando um valor estimado de 94.775 GWh. No cenário conservador, observa-se que metade dessa geração é realizada por termelétricas e a outra metade por parques eólicos. No cenário de transição, dominado pelo gás natural, destaca-se o crescimento exponencial da geração fotovoltaica. No cenário 100% renovável, dominado por parques eólicos, além do crescimento semelhante da geração fotovoltaica como no cenário de transição, destaca-se a utilização dos resíduos sólidos urbanos e de centrais solar térmicas de concentração

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the W gamma Production Cross Section in Proton-Proton Collisions at root s=13 TeV and Constraints on Effective Field Theory Coefficients

    Get PDF
    A fiducial cross section for W gamma production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb(-1) of data collected using the CMS detector at the LHC. The W -> e nu and mu nu decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.Peer reviewe

    Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV

    Get PDF
    The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore