165 research outputs found

    Biowaiver monographs for immediate release solid oral dosage forms: Doxycycline hyclate

    Full text link
    Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing doxycycline hyclate are reviewed. According to the Biopharmaceutics Classification System (BCS), doxycycline hyclate can be assigned to BCS Class I. No problems with BE of IR doxycycline formulations containing different excipients and produced by different manufacturing methods have been reported and hence the risk of bio in equivalence caused by these factors appears to be low. Doxycycline has a wide therapeutic index. Further, BCS-based dissolution methods have been shown to be capable of identifying formulations which may dissolve too slowly to generate therapeutic levels. It is concluded that a biowaiver is appropriate for IR solid oral dosage forms containing doxycycline hyclate as the single Active Pharmaceutical Ingredient (API) provided that (a) the test product contains only excipients present in doxycycline hyclate IR solid oral drug products approved in the International Conference on Harmonization (ICH) or associated countries; and (b) the comparator and the test products comply with the BCS criteria for “very rapidly dissolving” or, alternatively, when similarity of the dissolution profiles can be demonstrated and the two products are “rapidly dissolving.”. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1639–1653, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64911/1/21954_ftp.pd

    The use of PBPK/PD to establish clinically relevant dissolution specifications for zolpidem immediate release tablets

    Get PDF
    Background: Zolpidem is a non-benzodiazepine hypnotic agent which has been shown to be effective in inducing and maintaining sleep in adults and is one of the most frequently prescribed hypnotics in the world. For drugs that are used to treat sleeping disorders, the time to reach the maximum concentration (Tmax) of the drug in plasma is important to achieving a fast onset of action and this must be maintained when switching from one product to another. Objectives: The main objective of the present work was to create a PBPK/PD model for zolpidem and establish a clinically relevant “safe space” for dissolution of zolpidem from the commercial immediate release (IR) formulation. A second objective was to analyze literature pharmacokinetic data to verify the negative food effect ascribed to zolpidem and consider its ramifications in terms of the “safe space” for dissolution. Methods: Using dissolution, pharmacokinetic and pharmacodynamic data, an integrated PBPK/PD model for immediate release zolpidem tablets was constructed in Simcyp¼. This model was used to identify the clinically relevant dissolution specifications necessary to ensure efficacy. Results: According to the simulations, as long as 85% of the drug is released in 45 minutes or less, the impact on the PK and PD profiles of zolpidem would be minimal. According to the FDA, the drug has to dissolve from the test and reference products at a similar rate and to an extent of 85% in not more than 30 minutes to pass bioequivalence via the BCS-biowaiver test. Thus, the BCS-biowaiver specifications are somewhat more stringent than the “safe space” based on the PBPK/PD model. Published data from fasted and fed state pharmacokinetic studies suggest but do not prove a negative food effect of zolpidem. Conclusions: A PBPK/PD model indicates that current BCS biowaiver criteria are more restrictive for immediate release zolpidem tablets than they need to be. In view of the close relationship between PK and PD, it remains advisable to avoid taking zolpidem tablets with or immediately after a meal, as indicated by the Stilnox¼ labeling

    Characterisation of human saliva as a platform for oral dissolution medium development

    Get PDF
    Human saliva is a biological fluid of great importance in the field of dissolution testing. However, until now, no consensus has been reached on its key characteristics relevant to dissolution testing. As a result, it is difficult to select or develop an in vitro dissolution medium to best represent human saliva. In this study, the pH, buffer capacity, surface tension, viscosity and flow rate of both unstimulated (US) and stimulated (SS) human saliva were investigated in order to provide a platform of reference for future dissolution studies using simulated salivary fluids. Age and gender related differences in a sample size of 30 participants for each parameter were investigated. Significant differences were established between US and SS for all characteristics except surface tension. Therefore, the requirement for using two simulated salivary fluids should be considered when developing an oral dissolution model

    Human Gastrointestinal Juices Intended for Use in In Vitro Digestion Models

    Get PDF
    The aim of this study was to characterise the individual human gastric and duodenal juices to be used in in vitro model digestion and to examine the storage stability of the enzymes. Gastroduodenal juices were aspirated, and individual variations in enzymatic activities as well as total volumes, pH, bile acids, protein and bilirubin concentrations were recorded. Individual pepsin activity in the gastric juice varied by a factor of 10, while individual total proteolytic activity in the duodenal juice varied by a factor of 5. The duodenal amylase activity varied from 0 to 52.6 U/ml, and the bile acid concentration varied from 0.9 to 4.5 mM. Pooled gastric and duodenal juices from 18 volunteers were characterised according to pepsin activity (26.7 U/ml), total proteolytic activity (14.8 U/ml), lipase activity (951.0 U/ml), amylase activity (26.8 U/ml) and bile acids (4.5 mM). Stability of the main enzymes in two frozen batches of either gastric or duodenal juice was studied for 6 months. Pepsin activity decreased rapidly and adjusting the pH of gastric juice to 4 did not protect the pepsin from degradation. Lipase activity remained stable for 4 months, however decreased rapidly thereafter even after the addition of protease inhibitors. Glycerol only marginally stabilised the survival of the enzymatic activities. These results of compositional variations in the individual gastrointestinal juices and the effect of storage conditions on enzyme activities are useful for the design of in vitro models enabling human digestive juices to simulate physiological digestion

    Exploring gastrointestinal variables affecting drug and formulation behavior: methodologies, challenges and opportunities

    Get PDF
    Various gastrointestinal (GI) factors affect drug and formulation behavior after oral administration, including GI transfer, motility, pH and GI fluid volume and composition. An in-depth understanding of these physiological and anatomical variables is critical for a continued progress in oral drug development. In this review, different methodologies (invasive versus non-invasive) to explore the impact of physiological variables on formulation behavior in the human GI tract are presented, revealing their strengths and limitations. The techniques mentioned allow for an improved understanding of the role of following GI variables: gastric emptying (magnetic resonance imaging (MRI), scintigraphy, acetaminophen absorption technique, ultrasonography, breath test, intraluminal sampling and telemetry), motility (MRI, small intestinal/colonic manometry and telemetry), GI volume changes (MRI and ultrasonography), temperature (telemetry) and intraluminal pH (intraluminal sampling and telemetry)

    Assessment of age-related changes in pediatric gastrointestinal solubility

    Get PDF
    PurposeCompound solubility serves as a surrogate indicator of oral biopharmaceutical performance. Between infancy and adulthood, marked compositional changes in gastrointestinal (GI) fluids occur. This study serves to assess how developmental changes in GI fluid composition affects compound solubility.MethodsSolubility assessments were conducted in vitro using biorelevant media reflective of age-specific pediatric cohorts (i.e., neonates and infants). Previously published adult media (i.e., FaSSGF, FeSSGF, FaSSIF.v2, and FeSSIF.v2) were employed as references for pediatric media development. Investigations assessing age-specific changes in GI fluid parameters (i.e., pepsin, bile acids, pH, osmolality, etc.) were collected from the literature and served to define the composition of neonatal and infant media. Solubility assessments at 37°C were conducted for seven BCS Class II compounds within the developed pediatric and reference adult media.ResultsFor six of the seven compounds investigated, solubility fell outside an 80–125% range from adult values in at least one of the developed pediatric media. This result indicates a potential for age-related alterations in oral drug performance, especially for compounds whose absorption is delimited by solubility (i.e., BCS Class II).ConclusionDevelopmental changes in GI fluid composition can result in relevant discrepancies in luminal compound solubility between children and adults.<br/

    Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update

    No full text
    Purpose. The aim of this study was to update the compositions of biorelevant media to represent the composition and physical chemical characteristics of the gastrointestinal fluids as closely as possible while providing physical stability during dissolution runs and short-term storage. Methods. Media were designed to reflect postprandial conditions in the stomach and proximal small intestine in the &quot;early&quot;, &quot;middle&quot;, and &quot;late&quot; phases of digestion. From these &quot;snapshot&quot; media, general media for simulating postprandial conditions were devised. Additionally, media reflecting preprandial conditions in the stomach and small intestine were revisited. Results. A set of four media is presented. A recently published medium to represent the fasted stomach, FaSSGF, needed no further revision. To simulate the postprandial stomach, a new medium, FeSSGF, is presented. Media representing the upper small intestine in the fed and fasted states were fine-tuned according to physicochemical and biochemical characteristics in vivo. All four media proved to be stable under ambient storage conditions for at least 72 h as well as under usual dissolution test conditions. Conclusions. The updated dissolution media can be used to predict formulation performance and food effects in vivo. These media are more physiologically relevant and show better physical stability than their corresponding predecessors. © 2008 Springer Science+Business Media, LLC

    Pharmacokinetics of minocycline in domestic cats

    No full text

    Forecasting in vivo oral absorption and food effect of micronized and nanosized aprepitant formulations in humans

    No full text
    This study coupled results from biorelevant dissolution tests with in silico simulation technology to forecast in vivo oral absorption of micronized and nanosized aprepitant formulations in the pre- and post-prandial states. In vitro dissolution tests of the nanosized aprepitant formulation and micronized drug were performed in biorelevant and compendial media. An in silico physiologically based pharmacokinetic (PBPK) model was developed based on STELLAŸ software using dissolution kinetics, standard gastrointestinal (GI) parameters and post-absorptive disposition parameters. GI parameters (gastric emptying rate and GI fluid volume) were varied according to the dosing conditions. Disposition parameters were estimated by fitting compartmental models to the in vivo oral PK data. Predictions of in vivo performance in each prandial state were evaluated using the AUC and Cmax generated from the simulated PK profiles. To predict oral absorption from the extremely fast dissolving nanosized aprepitant formulation, several variations on a previously published model were evaluated. Although models that assumed that the formulation behaved as an oral solution or that adjusted the dissolution kinetics according to the different numbers of particles per gram between micronized and nanosized aprepitant generated profiles similar to the observed in vivo data in the fed state, simulated profiles for the fasted state showed much faster absorption than that observed in the in vivo data. This appeared to result from the assumption of no absorption restrictions in those models. To better predict in vivo performance in both fasted and fed states, a model that adds permeability restrictions to absorption was applied. This model not only simulated the in vivo profiles for aprepitant well in both prandial states, but also predicted the dependency of the pharmacokinetics on the dose and the particle size of aprepitant. In conclusion, a model based on STELLAŸ software combined with dissolution results in biorelevant media successfully forecasts the in vivo performance of both nanosized and micronized formulations of aprepitant in the fed and fasted states. Although dissolution is the primary limitation to the rate of absorption for micronized aprepitant, some permeability restrictions are revealed for the nanosized formulation. The results also indicate that biorelevant dissolution media have strong advantages over compendial media in forecasting the in vivo behavior of aprepitant. © 2010 Elsevier B.V
    • 

    corecore