105 research outputs found
Controlling the Bureaucracy of the Antipoverty Program
Rapid progress made in various areas of regenerative medicine in recent years occurred both at the cellular level, with the Nobel prize-winning discovery of reprogramming (generation of induced pluripotent stem (iPS) cells) and also at the biomaterial level. The use of four transcription factors, Oct3/4, Sox2, c-Myc, and Klf4 (called commonly "Yamanaka factors") for the conversion of differentiated cells, back to the pluripotent/embryonic stage, has opened virtually endless and ethically acceptable source of stem cells for medical use. Various types of stem cells are becoming increasingly popular as starting components for the development of replacement tissues, or artificial organs. Interestingly, many of the transcription factors, key to the maintenance of stemness phenotype in various cells, are also overexpressed in cancer (stem) cells, and some of them may find the use as prognostic factors. In this review, we describe various methods of iPS creation, followed by overview of factors known to interfere with the efficiency of reprogramming. Next, we discuss similarities between cancer stem cells and various stem cell types. Final paragraphs are dedicated to interaction of biomaterials with tissues, various adverse reactions generated as a result of such interactions, and measures available, that allow for mitigation of such negative effects
The pharmacological regulation of cellular mitophagy
Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications
On/off-switchable anti-neoplastic nanoarchitecture.
Throughout the world, there are increasing demands for alternate approaches to advanced cancer therapeutics. Numerous potentially chemotherapeutic compounds are developed every year for clinical trial and some of them are considered as potential drug candidates. Nanotechnology-based approaches have accelerated the discovery process, but the key challenge still remains to develop therapeutically viable and physiologically safe materials suitable for cancer therapy. Here, we report a high turnover, on/off-switchable functionally popping reactive oxygen species (ROS) generator using a smart mesoporous titanium dioxide popcorn (TiO2 Pops) nanoarchitecture. The resulting TiO2 Pops, unlike TiO2 nanoparticles (TiO2 NPs), are exceptionally biocompatible with normal cells. Under identical conditions, TiO2 Pops show very high photocatalytic activity compared to TiO2 NPs. Upon on/off-switchable photo activation, the TiO2 Pops can trigger the generation of high-turnover flash ROS and can deliver their potential anticancer effect by enhancing the intracellular ROS level until it crosses the threshold to open the 'death gate', thus reducing the survival of cancer cells by at least six times in comparison with TiO2 NPs without affecting the normal cells
Cancer stem cells (CSCs) : metabolic strategies for their identification and eradication
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full rep- ertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, onco- genic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly,
the action of metabolic pathways in CSC maintenance might not be merely a conse- quence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the bio- chemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to ‘force’ CSCs within certain metabolic
dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer
Phosphorylcholine and KR12-Containing Corneal Implants in HSV-1-Infected Rabbit Corneas
Severe HSV-1 infection can cause blindness due to tissue damage from severe inflammation. Due to the high risk of graft failure in HSV-1-infected individuals, cornea transplantation to restore vision is often contraindicated. We tested the capacity for cell-free biosynthetic implants made from recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) to suppress inflammation and promote tissue regeneration in the damaged corneas. To block viral reactivation, we incorporated silica dioxide nanoparticles releasing KR12, the small bioactive core fragment of LL37, an innate cationic host defense peptide produced by corneal cells. KR12 is more reactive and smaller than LL37, so more KR12 molecules can be incorporated into nanoparticles for delivery. Unlike LL37, which was cytotoxic, KR12 was cell-friendly and showed little cytotoxicity at doses that blocked HSV-1 activity in vitro, instead enabling rapid wound closure in cultures of human epithelial cells. Composite implants released KR12 for up to 3 weeks in vitro. The implant was also tested in vivo on HSV-1-infected rabbit corneas where it was grafted by anterior lamellar keratoplasty. Adding KR12 to RHCIII-MPC did not reduce HSV-1 viral loads or the inflammation resulting in neovascularization. Nevertheless, the composite implants reduced viral spread sufficiently to allow stable corneal epithelium, stroma, and nerve regeneration over a 6-month observation period
Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer
Cancer and cancer stem cell targeting agents : A focus on salinomycin and apoptin
Current cancer treatments involving surgery, radiotherapy, and chemotherapy target the vast majority of cancer cells, but they are only partially effective in eliminating the disease. Failure to eliminate cancer with conventional treatments can lead to recurrence, which usually kills patient. This often occurs when cancer cells develop resistance to cancer drugs or when cancer-initiating cells (cancer stem cells), unaffected by existing treatment procedures, are present. Here, we studied two drugs, salinomycin and apoptin, that exhibit great potential in the future of cancer treatment not only for restricting malignancy, but also in preventing tumor recurrence. Salinomycin is an antibiotic that was used in poultry farming that is now used clinically to target cancer stem cells, and apoptin is a chicken anemia virus-derived protein that is capable of detecting and killing transformed cells. In this study, we delved into the molecular mechanism of salinomycin action leading to cancer cell death. We showed that salinomycin induces autophagy in both cancer and normal primary cells. We further demonstrated that salinomycin promotes mitochondrial fission, thus increasing mitochondrial mass and mitochondria-specific autophagy, mitophagy. Salinomycin-induced cell death was both necrotic and apoptotic as determined by increased release of HMGB1 and caspase-3, -8 and -9 activation. We also found that stress responses of normal and cancer cells to salinomycin differ and this difference is aggravated by starvation conditions. We proposed that a combinational treatment with glucose starvation, or glucose analogues such as 2DG or 2FDG, might enhance the effects of salinomycin on cancer cells while protecting normal cells. We previously reported that apoptin interacts with BCRABL1, a protein that is expressed in patients with chronic myeloid leukemia (CML). We located a minimal region on the apoptin protein that triggers inhibition of downstream BCR-ABL1 signaling effects. This deca-peptide region was tested on patient samples and was shown to effectively kill cancer cells derived from patients, similar to the drug Imatinib. We further show that the apoptin decapeptide is cytotoxic to Imatinib-resistant patient-derived cancer cells. Thus, we identified a novel therapeutic targeting agent that can not only overcome drug resistance, but it can also induce cancer cell death without affecting normal cells
Activation of vascular endothelial growth factor receptor-3 expression by homeobox transcription factor, Prox1
Modeling of Molecular Interaction between Apoptin, BCR-Abl and CrkL - An Alternative Approach to Conventional Rational Drug Design
In this study we have calculated a 3D structure of apoptin and through modeling and docking approaches, we show its
interaction with Bcr-Abl oncoprotein and its downstream signaling components, following which we confirm some of the
newly-found interactions by biochemical methods. Bcr-Abl oncoprotein is aberrantly expressed in chronic myelogenous
leukaemia (CML). It has several distinct functional domains in addition to the Abl kinase domain. The SH3 and SH2 domains
cooperatively play important roles in autoinhibiting its kinase activity. Adapter molecules such as Grb2 and CrkL interact
with proline-rich region and activate multiple Bcr-Abl downstream signaling pathways that contribute to growth and
survival. Therefore, the oncogenic effect of Bcr-Abl could be inhibited by the interaction of small molecules with these
domains. Apoptin is a viral protein with well-documented cancer-selective cytotoxicity. Apoptin attributes such as SH2-like
sequence similarity with CrkL SH2 domain, unique SH3 domain binding sequence, presence of proline-rich segments, and
its nuclear affinity render the molecule capable of interaction with Bcr-Abl. Despite almost two decades of research, the
mode of apoptin’s action remains elusive because 3D structure of apoptin is unavailable. We performed in silico threedimensional
modeling of apoptin, molecular docking experiments between apoptin model and the known structure of Bcr-
Abl, and the 3D structures of SH2 domains of CrkL and Bcr-Abl. We also biochemically validated some of the interactions
that were first predicted in silico. This structure-property relationship of apoptin may help in unlocking its cancer-selective
toxic properties. Moreover, such models will guide us in developing of a new class of potent apoptin-like molecules with
greater selectivity and potency
Response to Letter to Editor “Comment on “Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants” by Jangamreddy JR et al.”
- …
