10 research outputs found

    Oral delivery of il-27 recombinant bacteria attenuates immune colitis in mice

    Get PDF
    BACKGROUND & AIMS: Treatment of inflammatory bowel disease (IBD) would benefit from specific targeting of therapeutics to the intestine. We developed a strategy for localized delivery of the immunosuppressive cytokine IL27, which is actively synthesized in situ by the food-grade bacterium Lactococcuslactis (LL-IL-27), and tested its ability to reduce colitis in mice. METHODS: The 2 genes encoding mouse IL27 were synthesized with optimal codon usage for L lactis and joined with a linker; a signal sequence was added to allow for secretion of the product. The construct was introduced into L lactis. Colitis was induced via transfer of CD4(+)CD45RB(hi) T cells into Rag(−/−) mice to induce colitis; 7.5 weeks later, LL-IL-27 was administered to mice via gavage. Intestinal tissues were collected and analyzed. RESULTS: LL-IL-27 administration protected mice from T-cell transfer-induced enterocolitis and death. LL-IL-27 reduced disease activity scores, pathology features of large and small bowel, and levels of inflammatory cytokines in colonic tissue. LL-IL-27 also reduced numbers of CD4(+) and IL17(+) T cells in gut-associated lymphoid tissue. The effects of LL-IL-27 required production of IL10 by the transferred T cells. LL-IL-27 was more effective than either LL-IL-10 or systemic administration of recombinant IL27 in reducing colitis in mice. LL-IL-27 also reduced colitis in mice following administration of dextran sodium sulfate. CONCLUSIONS: L lactis engineered to express IL27 (LL-IL-27) reduces colitis in mice, by increasing production of IL10. Mucosal delivery of LL-IL-27 could be a more effective and safer therapy for IBD

    Use of angiotensin converting enzyme inhibitors is associated with reduced risk of late bladder toxicity following radiotherapy for prostate cancer

    No full text
    BACKGROUND AND PURPOSE: Genome-wide association studies (GWAS) of late hematuria following prostate cancer radiotherapy identified single nucleotide polymorphisms (SNPs) near AGT, encoding angiotensinogen. We tested the hypothesis that patients taking angiotensin converting enzyme inhibitors (ACEi) have a reduced risk of late hematuria. We additionally tested genetically-defined hypertension. MATERIALS AND METHODS: Prostate cancer patients undergoing potentially-curative radiotherapy were enrolled onto two multi-center observational studies, URWCI (N = 256) and REQUITE (N = 1,437). Patients were assessed pre-radiotherapy and followed prospectively for development of toxicity for up to four years. The cumulative probability of hematuria was estimated by the Kaplan-Meier method. Multivariable grouped relative risk models assessed the effect of ACEi on time to hematuria adjusting for clinical factors and stratified by enrollment site. A polygenic risk score (PRS) for blood pressure was tested for association with hematuria in REQUITE and our Radiogenomics Consortium GWAS. RESULTS: Patients taking ACEi during radiotherapy had a reduced risk of hematuria (HR 0.51, 95%CI 0.28 to 0.94, p = 0.030) after adjusting for prior transurethral prostate and/or bladder resection, heart disease, pelvic node radiotherapy, and bladder volume receiving 70 Gy, which are associated with hematuria. A blood pressure PRS was associated with hypertension (odds ratio per standard deviation 1.38, 95%CI 1.31 to 1.46, n = 5,288, p < 0.001) but not hematuria (HR per standard deviation 0.96, 95%CI 0.87 to 1.06, n = 5,126, p = 0.41). CONCLUSIONS: Our study is the first to show a radioprotective effect of ACEi on bladder in an international, multi-site study of patients receiving pelvic radiotherapy. Mechanistic studies are needed to understand how targeting the angiotensin pathway protects the bladder

    Proinflammatory tachykinins that signal through the neurokinin 1 receptor promote survival of dendritic cells and potent cellular immunity

    No full text
    Dendritic cells (DCs) are the preferred targets for immunotherapy protocols focused on stimulation of cellular immune responses. However, regardless of initial promising results, ex vivo generated DCs do not always promote immune-stimulatory responses. The outcome of DC-dependent immunity is regulated by proinflammatory cytokines and neuropeptides. Proinflammatory neuropeptides of the tachykinin family, including substance P (SP) and hemokinin-1 (HK-1), bind the neurokinin 1 receptor (NK1R) and promote stimulatory immune responses. Nevertheless, the ability of pro-inflammatory tachykinins to affect the immune functions of DCs remains elusive. In the present work, we demonstrate that mouse bone marrow–derived DCs (BMDCs) generated in the presence of granulocyte macrophage–colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), express functional NK1R. Signaling via NK1R with SP, HK-1, or the synthetic agonist [Sar9Met(O2)11]-SP rescues DCs from apoptosis induced by deprivation of GM-CSF and IL-4. Mechanistic analysis demonstrates that NK1R agonistic binding promotes DC survival via PI3K-Akt signaling cascade. In adoptive transfer experiments, NK1R-signaled BMDCs loaded with Ag exhibit increased longevity in draining lymph nodes, resulting in enhanced and prolonged effector cellular immunity. Our results contribute to the understanding of the interactions between the immune and nervous systems that control DC function and present a novel approach for ex vivo–generation of potent immune-stimulatory DCs
    corecore