11 research outputs found

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration

    Get PDF

    Wnt blockade with Dickkopf reduces intestinal crypt fission and intestinal growth in infant rats

    No full text
    ObjectivesIntestinal crypt fission peaks during infancy. In human and experimental familial polyposis coli, increased crypt fission is due to activation of Wnt/β-catenin signalling, but the molecular basis of crypt fission during intestinal growth has not been examined. The aim of this project was to investigate whether crypt fission and intestinal growth are affected by experimental blockade of the Wnt/β-catenin signalling pathway.MethodsHooded Wistar rats were given either the Wnt inhibitor, dickkopf (30 and 100 ng), daily or vehicle control intraperitoneally from days 11 to 15 and were killed at day 16. Intestinal morphometry was used to measure villous area, crypt area, percentage of crypt fission, and crypt mitotic count. Intestinal stem cells were assessed by expression of real time-polymerase chain reaction for Lgr5 (a stem cell marker), and the number of β-catenin-expressing crypts by immunostaining was determined after 100-ng dickkopf treatment.ResultsDickkopf at 30 and 100 ng/day reduced villous area to 71% (P = 0.013) and 29% (P ConclusionsWe conclude that intestinal crypt fission during infancy is mediated by Wnt signalling. It is possible that local treatment with Wnt agonists could be used to increase intestinal growth.Fauser, Jane K.; Donato, Rino P.; Woenig, Joshua A.; Proctor, Simon J.; Trotta, Andrew P.; Grover, Phulwinder K.; Howarth, Gordon S.; Penttila, Irmeli A.; Cummins, Adrian G

    Pathway Analysis Integrating Genome-Wide and Functional Data Identifies PLCG2 as a Candidate Gene for Age-Related Macular Degeneration

    No full text
    PURPOSE. Age-related macular degeneration (AMD) is the worldwide leading cause of blindness among the elderly. Although genome-wide association studies (GWAS) have identified AMD risk variants, their roles in disease etiology are not well-characterized, and they only explain a portion of AMD heritability. METHODS. We performed pathway analyses using summary statistics from the International AMD Genomics Consortium's 2016 GWAS and multiple pathway databases to identify biological pathways wherein genetic association signals for AMD may be aggregating. We determined which genes contributed most to significant pathway signals across the databases. We characterized these genes by constructing protein-protein interaction networks and performing motif analysis. RESULTS. We determined that eight genes (C2, C3, LIPC, MICA, NOTCH4, PLCG2, PPARA, and RAD51B) drive'' the statistical signals observed across pathways curated in the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Ontology (GO) databases. We further refined our definition of statistical driver gene to identify PLCG2 as a candidate gene for AMD due to its significant gene-level signals (P < 0.0001) across KEGG, Reactome, GO, and NetPath pathways. CONCLUSIONS. We performed pathway analyses on the largest available collection of advanced AMD cases and controls in the world. Eight genes strongly contributed to significant pathways from the three larger databases, and one gene (PLCG2) was central to significant pathways from all four databases. This is, to our knowledge, the first study to identify PLCG2 as a candidate gene for AMD based solely on genetic burden. Our findings reinforce the utility of integrating in silico genetic and biological pathway data to investigate the genetic architecture of AMD

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity

    Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    In the HTML version of this article initially published, the author groups ‘CHD Exome+ Consortium’, ‘EPIC-CVD Consortium’, ‘ExomeBP Consortium’, ‘Global Lipids Genetic Consortium’, ‘GoT2D Genes Consortium’, ‘EPIC InterAct Consortium’, ‘INTERVAL Study’, ‘ReproGen Consortium’, ‘T2D-Genes Consortium’, ‘The MAGIC Investigators’ and ‘Understanding Society Scientific Group’ appeared at the end of the author list but should have appeared earlier in the list, after author Krina T. Zondervan. The errors have been corrected in the HTML version of the article

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

    Get PDF
    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity
    corecore