72 research outputs found

    AMRUTIKARANA - A CRITICAL REVIEW

    Get PDF
    The Bhasmas are the unique preparations of metals and minerals commonly used in Ayurveda for the treatment of various ailments. Marana (incineration) process converts the native form of metal and minerals into stable and assimilable form called Bhasmas (calx). Bhasmas are said to be the most ancient application of nanomedicine. After the Marana process Bhasmas of Abhraka, Louha and Tamra are subjected to a special process called Amrutikarana. The process is performed to remove the remnant Doshas (impurities) which might be present in the Bhasma and also claimed that it enhances the therapeutic efficacy. In the present paper, an attempt is made to review and put forth the concept of Amrutikarana

    PHARMACEUTICAL PROCESSING AND ANALYTICAL STUDY OF TRIVANGA BHASMA

    Get PDF
    Background: Rasashastra is a branch of Ayurvedic pharmaceutics, which deals with the conversion of metals & minerals into potent medicines. In Rasashastra, the metals like gold, silver, copper, iron, lead, tin, zinc etc. are converted in to Bhasma and are applied in therapeutics. Validity of this branch of science totally depends on the successful completion of the practical aspects with careful observations, and it becomes necessary to perform analytical studies to check the quality of the finished products. Hence, the present study was carried out to understand the pharmaceutical processing and to analyze the Trivanga Bhasma with the aid of classical tests and modern analytical tools.Materials & Methods: Trivanga Bhasma was prepared by subjecting the Vanga, Naga & Yashada to Samanya & Vishesha Shodhana, Jarana and Marana processes as per the classical references. Final product was then subjected to all the classical Bhasmaparikshas and also analyzed by adopting modern analytical techniques.Results & Conclusion: Yellow coloured Trivanga Bhasma which passed all the Bhasmaparikshas was obtained after seventeen Laghuputas. Percentile of tin, lead & zinc were noted

    Toxicovigilance : A prerequisite to drug safety surveillance in Ayurveda

    Get PDF
    Toxicovigilance is the active process of identifying and evaluating the toxic risks existing in a community and evaluating the measures to reduce or eliminate them. Although the technical term “toxicovigilance” does not feature in Ayurvedic texts, its essence is highlighted in Agada Tantra. Agada Tantra has comprehensive approach on toxic effects of Visha Dravyas (toxic substances) and its management. Through toxicovigilance; not merely there is scope for Ayurveda to find solution for toxicity issues, besides there is extensive scope for screening and regulating Ayurvedic formulations containing poisonous drugs of herbal/metal/mineral origin. In fact, study of poisonous drugs and ADR monitoring is an essential aspect in toxicological departments. It is the need of the hour to employ the Ayurvedic discipline of toxicology to explore the challenges that Ayurveda is facing today with regard to drug safety. A comprehensive study of all potential exposure associated with Ayurvedic medicaments, risk assessment, prevention and management can be the primary footstep in this direction. At this point, vigilance of toxic drugs is to be done by considering the guidelines on collection, pharmaceutical processing, indications, contraindications, dosage and antidotes as mentioned in Ayurvedic classics. Thus, data of toxicovigilance can be effectively applied in monitoring drug safety in Ayurveda

    Correlators and fractional statistics in the quantum Hall bulk

    Full text link
    We derive single-particle and two-particle correlators of anyons in the presence of a magnetic field in the lowest Landau level. We show that the two-particle correlator exhibits signatures of fractional statistics which can distinguish anyons from their fermionic and bosonic counterparts. These signatures include the zeroes of the two-particle correlator and its exclusion behavior. We find that the single-particle correlator in finite geometries carries valuable information relevant to experiments in which quasiparticles on the edge of a quantum Hall system tunnel through its bulk.Comment: 4 pages, 3 figures, RevTe

    Revisiting the Hanbury Brown-Twiss set-up for fractional statistics

    Full text link
    The Hanbury Brown-Twiss experiment has proved to be an effective means of probing statistics of particles. Here, in a set-up involving edge-state quasiparticles in a fractional quantum Hall system, we show that a variant of the experiment composed of two sources and two sinks can be used to unearth fractional statistics. We find a clear cut signature of the statistics in the equal-time current-current correlation function for quasiparticle currents emerging from the two sources and collected at the sinks.Comment: 4 pages, 3 figure

    Quasi-particle propagation in quantum Hall systems

    Get PDF
    We study various geometrical aspects of the propagation of particles obeying fractional statistics in the physical setting of the quantum Hall system. We find a discrete set of zeros for the two-particle kernel in the lowest Landau level; these arise from a combination of a two-particle Aharonov-Bohm effect and the exchange phase related to fractional statistics. The kernel also shows short distance exclusion statistics, for instance, in a power law behavior as a function of initial and final positions of the particles. We employ the one-particle kernel to compute impurity-mediated tunneling amplitudes between different edges of a finite-sized quantum Hall system and and find that they vanishes for certain strengths and locations of the impurity scattering potentials. We show that even in the absence of scattering, the correlation functions between different edges exhibits unusual features for a narrow enough Hall bar.Comment: 16 pages including 4 figures; a more detailed and self-contained version of Phys. Rev. Lett. 99, 190401 (2007), arXiv:0705.0360; this is the final published versio

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Background Ending the global tobacco epidemic is a defining challenge in global health. Timely and comprehensive estimates of the prevalence of smoking tobacco use and attributable disease burden are needed to guide tobacco control efforts nationally and globally. Methods We estimated the prevalence of smoking tobacco use and attributable disease burden for 204 countries and territories, by age and sex, from 1990 to 2019 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We modelled multiple smoking-related indicators from 3625 nationally representative surveys. We completed systematic reviews and did Bayesian meta-regressions for 36 causally linked health outcomes to estimate non-linear dose-response risk curves for current and former smokers. We used a direct estimation approach to estimate attributable burden, providing more comprehensive estimates of the health effects of smoking than previously available. Findings Globally in 2019, 1.14 billion (95% uncertainty interval 1.13-1.16) individuals were current smokers, who consumed 7.41 trillion (7.11-7.74) cigarette-equivalents of tobacco in 2019. Although prevalence of smoking had decreased significantly since 1990 among both males (27.5% [26. 5-28.5] reduction) and females (37.7% [35.4-39.9] reduction) aged 15 years and older, population growth has led to a significant increase in the total number of smokers from 0.99 billion (0.98-1.00) in 1990. Globally in 2019, smoking tobacco use accounted for 7.69 million (7.16-8.20) deaths and 200 million (185-214) disability-adjusted life-years, and was the leading risk factor for death among males (20.2% [19.3-21.1] of male deaths). 6.68 million [86.9%] of 7.69 million deaths attributable to smoking tobacco use were among current smokers. Interpretation In the absence of intervention, the annual toll of 7.69 million deaths and 200 million disability-adjusted life-years attributable to smoking will increase over the coming decades. Substantial progress in reducing the prevalence of smoking tobacco use has been observed in countries from all regions and at all stages of development, but a large implementation gap remains for tobacco control. Countries have a dear and urgent opportunity to pass strong, evidence-based policies to accelerate reductions in the prevalence of smoking and reap massive health benefits for their citizens. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore