43 research outputs found

    Physiology and physical chemistry of bile acids

    Get PDF
    Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical–physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bioapplications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science

    Effect of antihypertensive treatments on insulin signalling in lympho-monocytes of essential hypertensive patients: a pilot study.

    Get PDF
    It was previously demonstrated that metabolic syndrome in humans is associated with an impairment of insulin signalling in circulating mononuclear cells. At least in animal models of hypertension, angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB) may correct alterations of insulin signalling in the skeletal muscle. In the first study, we investigated the effects of a 3-month treatment with an ARB with additional PPARγ agonist activity, telmisartan, or with a dihydropyridine calcium channel blocker, nifedipine, on insulin signalling in patients with mild-moderate essential hypertension. Insulin signalling was evaluated in mononuclear cells by isolating them through Ficoll-Paque density gradient centrifugation and protein analysis by Western Blot. An increased expression of mTOR and of phosphorylated (active) mTOR (p-mTOR) was observed in patients treated with telmisartan, but not in those treated with nifedipine, while both treatments increased the cellular expression of glucose transporter type 4 (GLUT-4). We also investigated the effects of antihypertensive treatment with two drug combinations on insulin signalling and oxidative stress. Twenty essential hypertensive patients were included in the study and treated for 4 weeks with lercanidipine. Then they were treated for 6 months with lercanidipine + enalapril or lercanidipine + hydrochlorothiazide. An increased expression of insulin receptor, GLUT-4 and an increased activation of p70S6K1 were observed during treatment with lercanidipine + enalapril but not with lercanidipine + hydrochlorothiazide. In conclusion, telmisartan and nifedipine are both effective in improving insulin signalling in human hypertension; however, telmisartan seems to have broader effects. The combination treatment lercanidipine + enalapril seems to be more effective than lercanidipine + hydrochlorothiazide in activating insulin signalling in human lympho-monocytes

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Bile salts: natural surfactants and precursors of a broad family of complex amphiphiles

    No full text
    Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials. © 2018 American Chemical Society

    Variants of G protein-coupled receptors: A reappraisal of their role in receptor regulation

    No full text
    Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M2 receptor. IRES driven expression of this C-terminal part of the muscarinic M2 receptor could represent a novel and additional mechanism of receptor regulation

    GPCRs: beyond structure towards therapy Variants of G protein-coupled receptors: a reappraisal of their role in receptor regulation

    No full text
    Abstract Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M 2 receptor. IRES driven expression of this C-terminal part of the muscarinic M 2 receptor could represent a novel and additional mechanism of receptor regulation

    Carvacrol reduces adipogenic differentiation by modulating autophagy and ChREBP expression.

    No full text
    OBJECTIVE:Obesity is the result of white adipose tissue accumulation where excess of food energy is stored to form triglycerides. De novo lipogenesis (DNL) is the continuous process of new fat production and is driven by the transcription factor ChREBP. During adipogenesis, white adipocytes change their morphology and the entire cell volume is occupied by one large lipid droplet. Recent studies have implicated an essential role of autophagy in adipogenic differentiation, cytoplasmic remodelling and mitochondria reorganization. The phenolic monoterpenoid carvacrol (2-methyl-5-[1-methylethyl]phenol), produced by numerous aromatic plants, has been shown to reduce lipid accumulation in murine 3T3-L1 cells during adipogenic differentiation by modulating genes associated with adipogenesis and inflammation. Therefore, the aim of this study was to evaluate whether carvacrol could affect autophagy and ChREBP expression during adipogenic differentiation. METHODS:The study was carried on by using the murine 3T3-L1 and the human WJ-MSCs (Wharton's jelly-derived mesenchymal stem cells) cell lines. Cells undergoing adipogenic differentiation were untreated or treated with carvacrol. Adipogenic differentiation was assessed by analyzing cellular lipid accumulation with Oil-Red O staining and by ultrastructural examination with TEM. Autophagy was evaluated by western immunoblotting of autophagy markers LC3B and p62/SQSTM and by ultrastructural examination of autophagic bodies. Autophagic flux was evaluated by using autophagy inhibitor cloroquine (CQ). ChREBP expression levels was assessed by both western blotting and immunoelectron microscopy and ChREBP activity by analysis of adipogenic target genes expression. RESULTS:We found that carvacrol reduced adipogenic differentiation of about 40% and 30% in, respectively, 3T3-L1 and in WJ-MSCs cells. The effect of carvacrol on adipogenic differentiation correlated with both reduction of autophagy and reduction of ChREBP expression. CONCLUSION:The results support the notion that carvacrol, through its effect on autophagy (essential for adipocyte maturation) and on ChREBP activity, could be used as a valuable adjuvant to reduce adipogenic differentiation

    Role of glycogen synthase kinase-3β and PPAR-γ on epithelial-to-mesenchymal transition in DSS-induced colorectal fibrosis

    No full text
    BACKGROUND:Intestinal fibrosis is characterized by abnormal production and deposition of extracellular matrix (ECM) proteins by activated myofibroblasts. The main progenitor cells of activated myofibroblasts are the fibroblasts and the epithelial cells, the latter through the epithelial-mesenchymal transition (EMT). AIM:To evaluate the action of the new PPAR-γ modulator, GED-0507-34 Levo (GED) on the expression of EMT associated and regulatory proteins such as TGF-β, Smad3, E-cadherin, Snail, ZEB1, β-catenin, and GSK-3β, in a mouse model of DSS-induced intestinal fibrosis. METHODS:Chronic colitis and fibrosis were induced by oral administration of 2.5% DSS (w/v) for 6 weeks. GW9662 (GW), a selective PPAR-γ inhibitor, was also administered by intraperitoneal injection at the dose of 1 mg/kg/day combined with GED treatment. All drugs were administered at the beginning of the second cycle of DSS (day 12). 65 mice were randomly divided into five groups (H2O as controls n = 10, H2O+GED n = 10, DSS n = 15, DSS+GED n = 15, DSS+GED+GW n = 15). The colon was excised for macroscopic examination and histological and morphometric analyses. The level of expression of molecules involved in EMT and fibrosis, like TGF-β, Smad3, E-cadherin, Snail, ZEB1, β-catenin, GSK-3β and PPAR-γ, was assessed by immunohistochemistry, immunofluorescence, western blot and Real Time PCR. RESULTS:GED improved the DSS-induced chronic colitis and fibrosis. GED was able to reduce the expression of the main fibrosis markers (α-SMA, collagen I-III and fibronectin) as well as the pivotal pro-fibrotic molecules IL-13, TGF-β and Smad3, while it increased the anti-fibrotic PPAR-γ. All these GED effects were nullified by co-administration of GW with GED. Furthermore, GED was able to normalize the expression levels of E-cadherin and β-catenin and upregulated GSK-3β, that are all known to be involved both in EMT and fibrosis. CONCLUSIONS:The DSS-induced intestinal fibrosis was improved by the new PPAR-γ modulator GED-0507-34 Levo through the modulation of EMT mediators and pro-fibrotic molecules and through GSK-3β induction

    C-12 vs C-3 substituted bile salts : An example of the effects of substituent position and orientation on the self-assembly of steroid surfactant isomers

    No full text
    Biomolecule derivatives are transversally used in nanotechnology. Deciphering their aggregation behavior is a crucial issue for the rational design of functional materials. To this end, it is necessary to build libraries of selectively functionalized analogues and infer general rules. In this work we enrich the highly applicative oriented collection of steroid derivatives, by reporting a rare example of C-12 selectively modified bile salt. While nature often exploits such position to encode functions, it is unusual and not trivial to prepare similar analogues in the laboratory. The introduction of a tert-butyl phenyl residue at C-12 provided a molecule with a self-assembly that remarkably switched from rigid pole-like structures to twisted ribbons at a biologically relevant critical temperature (∼25 °C). The system was characterized by microscopy and spectroscopy techniques and compared with the C-3 functionalized analogue. The twisted ribbons generate samples with a gel texture and a viscoelastic response. The parallel analysis of the two systems suggested that the observed thermoresponsive self-assemblies occur at similar critical temperatures and are probably dictated by the nature of the substituent, but involve aggregates with different structures depending on position and orientation of the substituent. This study highlights the self-assembly properties of two appealing thermoresponsive systems. Moreover, it adds fundamental insights hereto missing in the investigations of the relation between self-assembly and structure of synthetic steroids, which are valuable for the rational design of steroidal amphiphiles
    corecore