1,700 research outputs found
Building development and roads: implications for the distribution of stone curlews across the Brecks
Background: Substantial new housing and infrastructure development planned within England has the potential to conflict with the nature conservation interests of protected sites. The Breckland area of eastern England (the Brecks) is designated as a Special Protection Area for a number of bird species, including the stone curlew (for which it holds more than 60% of the UK total population). We explore the effect of buildings and roads on the spatial distribution of stone curlew nests across the Brecks in order to inform strategic development plans to avoid adverse effects on such European protected sites. Methodology: Using data across all years (and subsets of years) over the period 1988 – 2006 but restricted to habitat areas of arable land with suitable soils, we assessed nest density in relation to the distances to nearest settlements and to major roads. Measures of the local density of nearby buildings, roads and traffic levels were assessed using normal kernel distance-weighting functions. Quasi-Poisson generalised linear mixed models allowing for spatial auto-correlation were fitted. Results: Significantly lower densities of stone curlew nests were found at distances up to 1500m from settlements, and distances up to 1000m or more from major (trunk) roads. The best fitting models involved optimally distance-weighted variables for the extent of nearby buildings and the trunk road traffic levels. Significance : The results and predictions from this study of past data suggests there is cause for concern that future housing development and associated road infrastructure within the Breckland area could have negative impacts on the nesting stone curlew population. Given the strict legal protection afforded to the SPA the planning and conservation bodies have subsequently agreed precautionary restrictions on building development within the distances identified and used the modelling predictions to agree mitigation measures for proposed trunk road developments
Performance deficits of NK1 receptor knockout mice in the 5 choice serial reaction time task: effects of d Amphetamine, stress and time of day.
Background
The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/-) resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD). Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness) and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon.
Methods and Results
The 5-Choice Serial Reaction-Time Task (5-CSRTT) was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI) and a variable (VITI) inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.). NK1R-/- mice expressed greater omissions (inattentiveness), perseveration and premature responses (impulsivity) in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, premature responses of NK1R-/- mice were higher in the afternoon than the morning.
Conclusion
In addition to locomotor hyperactivity, NK1R-/- mice express inattentiveness, perseveration and impulsivity in the 5-CSRTT, thereby matching core criteria for a model of ADHD. Because d-amphetamine reduced perseveration in NK1R-/- mice, this action does not require functional NK1R. However, the lack of any improvement of omissions and premature responses in NK1R-/- mice given d-amphetamine suggests that beneficial effects of this psychostimulant in other rodent models, and ADHD patients, need functional NK1R. Finally, our results reveal experimental variables (stimulus parameters, stress and time of day) that could influence translational studies
Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks
Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia
Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs
Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog
Poloxomer 188 Has a Deleterious Effect on Dystrophic Skeletal Muscle Function
Duchenne muscular dystrophy (DMD) is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188) is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control). The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA) muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001). Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered
Process evaluation of appreciative inquiry to translate pain management evidence into pediatric nursing practice
Background
Appreciative inquiry (AI) is an innovative knowledge translation (KT) intervention that is compatible with the Promoting Action on Research in Health Services (PARiHS) framework. This study explored the innovative use of AI as a theoretically based KT intervention applied to a clinical issue in an inpatient pediatric care setting. The implementation of AI was explored in terms of its acceptability, fidelity, and feasibility as a KT intervention in pain management.
Methods
A mixed-methods case study design was used. The case was a surgical unit in a pediatric academic-affiliated hospital. The sample consisted of nurses in leadership positions and staff nurses interested in the study. Data on the AI intervention implementation were collected by digitally recording the AI sessions, maintaining logs, and conducting individual semistructured interviews. Data were analysed using qualitative and quantitative content analyses and descriptive statistics. Findings were triangulated in the discussion.
Results
Three nurse leaders and nine staff members participated in the study. Participants were generally satisfied with the intervention, which consisted of four 3-hour, interactive AI sessions delivered over two weeks to promote change based on positive examples of pain management in the unit and staff implementation of an action plan. The AI sessions were delivered with high fidelity and 11 of 12 participants attended all four sessions, where they developed an action plan to enhance evidence-based pain assessment documentation. Participants labeled AI a 'refreshing approach to change' because it was positive, democratic, and built on existing practices. Several barriers affected their implementation of the action plan, including a context of change overload, logistics, busyness, and a lack of organised follow-up.
Conclusions
Results of this case study supported the acceptability, fidelity, and feasibility of AI as a KT intervention in pain management. The AI intervention requires minor refinements (e.g., incorporating continued follow-up meetings) to enhance its clinical utility and sustainability. The implementation process and effectiveness of the modified AI intervention require evaluation in a larger multisite study
The ethics of digital well-being: a multidisciplinary perspective
This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being
The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants.
A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants
Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder.
Developing novel therapeutics for bipolar disorder (BD) has been hampered by limited mechanistic knowledge how sufferers switch between mania and depression-how the same brain can switch between extreme states-described as the "holy grail" of BD research. Strong evidence implicates seasonally-induced switching between states, with mania associated with summer-onset, depression with winter-onset. Determining mechanisms of and sensitivity to such switching is required. C57BL/6J and dopamine transporter hypomorphic (DAT-HY 50% expression) mice performed a battery of psychiatry-relevant behavioral tasks following 2-week housing in chambers under seasonally relevant photoperiod extremes. Summer-like and winter-like photoperiod exposure induced mania-relevant and depression-relevant behaviors respectively in mice. This behavioral switch paralleled neurotransmitter switching from dopamine to somatostatin in hypothalamic neurons (receiving direct input from the photoperiod-processing center, the suprachiasmatic nucleus). Mice with reduced DAT expression exhibited hypersensitivity to these summer-like and winter-like photoperiods, including more extreme mania-relevant (including reward sensitivity during reinforcement learning), and depression-relevant (including punishment-sensitivity and loss-sensitivity during reinforcement learning) behaviors. DAT mRNA levels switched in wildtype littermate mice across photoperiods, an effect not replicated in DAT hypomorphic mice. This inability to adjust DAT levels to match photoperiod-induced neurotransmitter switching as a homeostatic control likely contributes to the susceptibility of DAT hypormophic mice to these switching photoperiods. These data reveal the potential contribution of photoperiod-induced neuroplasticity within an identified circuit of the hypothalamus, linked with reduced DAT function, underlying switching between states in BD. Further investigations of the circuit will likely identify novel therapeutic targets to block switching between states
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
