3,059 research outputs found
The Hanle Effect in 1D, 2D and 3D
This paper addresses the problem of scattering line polarization and the
Hanle effect in one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) media for the case of a two-level model atom without
lower-level polarization and assuming complete frequency redistribution. The
theoretical framework chosen for its formulation is the QED theory of Landi
Degl'Innocenti (1983), which specifies the excitation state of the atoms in
terms of the irreducible tensor components of the atomic density matrix. The
self-consistent values of these density-matrix elements is to be determined by
solving jointly the kinetic and radiative transfer equations for the Stokes
parameters. We show how to achieve this by generalizing to Non-LTE polarization
transfer the Jacobi-based ALI method of Olson et al. (1986) and the iterative
schemes based on Gauss-Seidel iteration of Trujillo Bueno and Fabiani Bendicho
(1995). These methods essentially maintain the simplicity of the
Lambda-iteration method, but their convergence rate is extremely high. Finally,
some 1D and 2D model calculations are presented that illustrate the effect of
horizontal atmospheric inhomogeneities on magnetic and non-magnetic resonance
line polarization signals.Comment: 14 pages and 5 figure
International Society for Disease Surveillance Conference 2010: Enhancing the Synergy Between Research, Informatics, and Practice in Public Health
Genetic Covariance Structure of Reading, Intelligence and Memory in Children
This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two
The cardiac work-loop technique:An in vitro model for identifying and profiling drug-induced changes in inotropy using rat papillary muscles
Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.
Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells
Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction
Catalysts for oxygen reduction and evolution reactions are at the heart of
key renewable energy technologies including fuel cells and water splitting.
Despite tremendous efforts, developing oxygen electrode catalysts with high
activity at low costs remains a grand challenge. Here, we report a hybrid
material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a
high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and
oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little
catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR
activity that is further enhanced by nitrogen-doping of graphene. The
Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior
stability to Pt in alkaline solutions. The same hybrid is also highly active
for OER, making it a high performance non-precious metal based bi-catalyst for
both ORR and OER. The unusual catalytic activity arises from synergetic
chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
