56 research outputs found

    9-18歳男子水泳選手における無酸素的パワーの特徴

    Get PDF
    The purpose of this study was to investigate the characteristrics of anaerobic capacity from pre-puberty to adlescence. Twenty eight well trained swimmers were divided into five groups following age of 9 to 10 yrs (AG1), 11 to 12 yrs (AG2), 13 to 14 yrs (AG3), 15 to 16 yrs (AG4) and 17 to 18 (AG5). All swimmers first completed a series of four submaximal and one maximal effort swims for determination of swimming economy profile. The linear relationship (VO2 vs. velocity^3) was extrapolated to 140% of max VO2 for each swimmer and a corresponding velocity selected. The following day, swimmers completed a freestyle swim at the pace selected from the economy profile. During this test, accumulated 02 uptake was mearured continuously and the accumulated 02 deficit calculated following the swim (Hermansen, 1984). A two minute post swim blood sample was taken for analysis of lactate. Girth measurements of the upper arm were taken for determination of muscle area. A swim bench test was also administered for deterninetion of peak muscle power and total muscular work. The results were as follows ; 1) The values of O_2 deficit, % anaerobic contribution, and lactate acid showed increases with age. 2) Power/muscle and total muscular work displayed higher values with age. 3) A significant increase was found from AG2 to AG3 in all the items

    Complete Genome Sequences of Chop, DelRio, and GrandSlam, Three Gordonia Phages Isolated from Soil in Central Arkansas

    Get PDF
    Chop, DelRio, and GrandSlam are phage with a Siphoviridae morphotype isolated from soil in Arkansas using the host Gordonia terrae 3612. All three are temperate, and their genomes share at least 96% nucleotide identity. These phage are assigned to cluster DI based on gene content similarity to other sequenced actinobacteriophage

    Patterns of sick-leave and health outcomes in injured workers with back pain

    Get PDF
    Little is known about the sick-leave experiences of workers who make a workers’ compensation claim for back pain. Our objective is to describe the 1-year patterns of sick-leave and the health outcomes of a cohort of workers who make a workers’ compensation claim for back pain. We studied a cohort of 1,831 workers from five large US firms who made incident workers’ compensation claims for back pain between January 1, 1999 and June 30, 2002. Injured workers were interviewed 1 month (n = 1,321), 6 months (n = 810) and 1 year (n = 462) following the onset of their pain. We described the course of back pain using four patterns of sick-leave: (1) no sick-leave, (2) returned to worked and stayed, (3) multiple episodes of sick-leave and (4) not yet returned to work. We described the health outcomes as back and/or leg pain intensity, functional limitations and health-related quality of life. We analyzed data from participants who completed all follow-up interviews (n = 457) to compute the probabilities of transition between patterns of sick-leave. A significant proportion of workers experienced multiple episodes of sick-leave (30.2%; 95% CI 25.0–35.1) during the 1-year follow-up. The proportion of workers who did not report sick-leave declined from 42.4% (95% CI 39.0–46.1) at 1 month to 33.6% (28.0–38.7) at 1 year. One year after the injury, 2.9% (1.6–4.9) of workers had not yet returned to work. Workers who did not report sick-leave and those who returned and stayed at work reported better health outcomes than workers who experienced multiple episodes of sick-leave or workers who had not returned to work. Almost a third of workers with an incident episode of back pain experience recurrent spells of work absenteeism during the following year. Our data suggest that stable patterns of sick-leave are associated with better health

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Contemporary contestations over working time: time for health to weigh in

    Get PDF
    Non-communicable disease (NCD) incidence and prevalence is of central concern to most nations, along with international agencies such as the UN, OECD, IMF and World Bank. As a result, the search has begun for ‘causes of the cause’ behind health risks and behaviours responsible for the major NCDs. As part of this effort, researchers are turning their attention to charting the temporal nature of societal changes that might be associated with the rapid rise in NCDs. From this, the experience of time and its allocation are increasingly understood to be key individual and societal resources for health (7–9). The interdisciplinary study outlined in this paper will produce a systematic analysis of the behavioural health dimensions, or ‘health time economies’ (quantity and quality of time necessary for the practice of health behaviours), that have accompanied labour market transitions of the last 30 years - the period in which so many NCDs have risen sharply

    ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R ~ 22,500), high signal-to-noise ratio (>100), infrared (1.51–1.70 μm) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design—hardware, field placement, target selection, operations—and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available

    ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY

    Get PDF
    The SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey operated from 2011–2014 using the APOGEE spectrograph, which collects high-resolution (R ~ 22,500), near-IR (1.51–1.70 µm) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data products that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters (Teff , log g, [M/H], [a/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; it is smaller for some elemental abundances within more limited ranges and at high signal-to-noise ratio. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1–0.2 dex. Uncertainties may be larger at cooler temperatures (Teff < 4000 K). Access to the public data release and data products is described, and some guidance for using the data products is provided

    The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V

    Full text link
    The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ
    corecore