64 research outputs found

    Pulmonary fibrosis induced by H5N1 viral infection in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory process results in lung injury that may lead to pulmonary fibrosis (PF). Here, we described PF in mice infected with H5N1 virus.</p> <p>Methods</p> <p>Eight-week-old BALB/c mice were inoculated intranasally with 1 × 10<sup>1 </sup>MID<sub>50 </sub>of A/Chicken/Hebei/108/2002(H5N1) viruses. Lung injury/fibrosis was evaluated by observation of hydroxyproline concentrations, lung indexes, and histopathology on days 7, 14, and 30 postinoculation.</p> <p>Results</p> <p>H5N1-inoculated mice presented two stages of pulmonary disease over a 30-d period after infection. At acute stage, infected-mice showed typical diffuse pneumonia with inflammatory cellular infiltration, alveolar and interstitial edema and hemorrhage on day 7 postinoculation. At restoration stage, most infected-mice developed PF of different severities on day 30 postinoculation, and 18% of the survived mice underwent severe interstitial and intra-alveolar fibrosis with thickened alveolar walls, collapsed alveoli and large fibrotic areas. The dramatically elevated hydroxyproline levels in H5N1-infected mice showed deposition of collagen in lungs, and confirmed fibrosis of lungs. The dry lung-to-body weight ratio was significantly increased in infected group, which might be associated with the formation of PF in H5N1-infected mice.</p> <p>Conclusion</p> <p>Our findings show that H5N1-infected mice develop the typical PF during restoration period, which will contribute to the investigation of fibrogenesis and potential therapeutic intervention in human H5N1 disease.</p

    Broad Clade 2 Cross-Reactive Immunity Induced by an Adjuvanted Clade 1 rH5N1 Pandemic Influenza Vaccine

    Get PDF
    The availability of H5N1 vaccines that can elicit a broad cross-protective immunity against different currently circulating clade 2 H5N1 viruses is a pre-requisite for the development of a successful pre-pandemic vaccination strategy. In this regard, it has recently been shown that adjuvantation of a recombinant clade 1 H5N1 inactivated split-virion vaccine with an oil-in-water emulsion-based adjuvant system also promoted cross-immunity against a recent clade 2 H5N1 isolate (A/Indonesia/5/2005, subclade 2.1). Here we further analyse the cross-protective potential of the vaccine against two other recent clade 2 isolates (A/turkey/Turkey/1/2005 and A/Anhui/1/2005 which are, as defined by WHO, representatives of subclades 2.2 and 2.3 respectively).Two doses of the recombinant A/Vietnam/1194/2004 (H5N1, clade 1) vaccine were administered 21 days apart to volunteers aged 18-60 years. We studied the cross-clade immunogenicity of the lowest antigen dose (3.8 microg haemagglutinin) given with (N = 20) or without adjuvant (N = 20). Immune responses were assessed at 21 days following the first and second vaccine doses and at 6 months following first vaccination. Vaccination with two doses of 3.8 microg of the adjuvanted vaccine induced four-fold neutralising seroconversion rates in 85% of subjects against A/turkey/Turkey/1/2005 (subclade 2.2) and 75% of subjects against A/Anhui/1/2005 (subclade 2.3) recombinant strains. There was no response induced against these strains in the non-adjuvanted group. At 6 months following vaccination, 70% and 60% of subjects retained neutralising antibodies against the recombinant subclade 2.2 and 2.3 strains, respectively and 40% of subjects retained antibodies against the recombinant subclade 2.1 A/Indonesia/5/2005 strain.In addition to antigen dose-sparing, adjuvantation of inactivated split H5N1 vaccine promotes broad and persistent cross-clade immunity which is a pre-requisite for a pre-pandemic vaccine.ClinicalTrials.gov NCT00309634

    Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice

    Get PDF
    BACKGROUND: Highly pathogenic avian H5N1 influenza virus is a major public health concern. Given the lack of effective vaccine and recent evidence of antiviral drug resistance in some isolates, alternative strategies for containment of a possible future pandemic are needed. Humanized monoclonal antibodies (mAbs) that neutralize H5N1 virus could be used as prophylaxis and treatment to aid in the containment of such a pandemic. METHODS: Neutralizing mAbs against H5 hemagglutinin were humanized and introduced into C57BL/6 mice (1, 5, or 10 mg/kg bodyweight) one day prior to-, one day post- and three days post-lethal challenge with H5N1 A/Vietnam/1203/04 virus. Efficacy was determined by observation of weight loss as well as survival. RESULTS: Two mAbs neutralizing for antigenically variant H5N1 viruses, A/Vietnam/1203/04 and A/Hong Kong/213/03 were identified and humanized without loss of specificity. Both antibodies exhibited prophylactic efficacy in mice, however, VN04-2-huG1 performed better requiring only 1 mg/kg bodyweight for complete protection. When used to treat infection VN04-2-huG1 was also completely protective, even when introduced three days post infection, although higher dose of antibody was required. CONCLUSION: Prophylaxis and treatment using neutralizing humanized mAbs is efficacious against lethal challenge with A/Vietnam/1203/04, providing proof of principle for the use of passive antibody therapy as a containment option in the event of pandemic influenza

    Induction of Long-Term Protective Immune Responses by Influenza H5N1 Virus-Like Particles

    Get PDF
    Recurrent outbreaks of highly pathogenic H5N1 avian influenza virus pose a threat of eventually causing a pandemic. Early vaccination of the population would be the single most effective measure for the control of an emerging influenza pandemic.Influenza virus-like particles (VLPs) produced in insect cell-culture substrates do not depend on the availability of fertile eggs for vaccine manufacturing. We produced VLPs containing influenza A/Viet Nam1203/04 (H5N1) hemagglutinin, neuraminidase, and matrix proteins, and investigated their preclinical immunogenicity and protective efficacy. Mice immunized intranasally with H5N1 VLPs developed high levels of H5N1 specific antibodies and were 100% protected against a high dose of homologous H5N1 virus infection at 30 weeks after immunization. Protection is likely to be correlated with humoral and cellular immunologic memory at systemic and mucosal sites as evidenced by rapid anamnestic responses to re-stimulation with viral antigen in vivo and in vitro.These results provide support for clinical evaluation of H5N1 VLP vaccination as a public health intervention to mitigate a possible pandemic of H5N1 influenza

    Low Pathogenic Avian Influenza Isolates from Wild Birds Replicate and Transmit via Contact in Ferrets without Prior Adaptation

    Get PDF
    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    The importance of H2 haplotype sharing in the induction of specific unresponsiveness by pretransplant blood transfusions.

    No full text
    BACKGROUND: The beneficial effect on graft survival achieved by pretransplant blood transfusions is well established. Previous studies have shown that the degree of major histocompatibility complex (MHC) (mis)-match between the transfusion donor and the recipient plays a determining role. However, other factors are also involved. In this study, we explored the hypothesis that, in addition to sharing of MHC antigens between the transfusion donor and the recipient, the MHC type of the organ donor is also of importance. METHODS: To mimic the human situation, F1 mice, rather than inbred strains, were pretreated with haplotype-shared allogeneic whole blood transfusions and transplanted with hearts of organ donors with different matched or mismatched H2 haplotypes. RESULTS: When a heart was transplanted 1 week after donor-specific transfusion (DST; blood transfusion donor=organ donor), an excellent prolongation of graft survival was obtained (median survival time: 77 days vs. 9 days in untreated mice). However, this was only the case when a haplotype was shared with the recipient; a DST given with no match between organ donor (=BT donor) and recipient did not induce any prolongation. Furthermore, in order to obtain the optimal beneficial effect of a haplotype-shared blood transfusion, the other haplotype of the transfusion donor had to be mismatched with the recipient. The immunogenetic studies showed that haplotype-shared blood transfusions in combinations where the H2 type of the organ donor differed from that of the transfusion donor are less efficient in inducing prolongation of graft survival. CONCLUSIONS: These results demonstrate that haplotype-shared blood transfusions can induce a significantly prolonged survival of cardiac allografts in F1 mice. The immunogenetic studies suggest that presentation of alloantigen-derived peptides in the context of self MHC (the indirect pathway of allorecognition) is essential for the beneficial effect of haplotype-shared blood transfusions
    • 

    corecore