149 research outputs found

    Exploring Web-Based University Policy Statements on Plagiarism by Research-Intensive Higher Education Institutions

    Get PDF
    Plagiarism may distress universities in the US, but there is little agreement as to exactly what constitutes plagiarism. While there is ample research on plagiarism, there is scant literature on the content of university policies regarding it. Using a systematic sample, we qualitatively analyzed 20 Carnegie-classified universities that are “Very High in Research.” This included 15 public state universities and five high-profile private universities. We uncovered highly varied and even contradictory policies at these institutions. Notable policy variations existed for verbatim plagiarism, intentional plagiarism and unauthorized student collaboration at the studied institutions. We conclude by advising that the American Association of University Professors (AAUP), the American Association of Colleges and Universities (AACU) and others confer and come to accord on the disposition of these issues

    The heteronomy of choice architecture

    Get PDF
    Choice architecture is heralded as a policy approach that does not coercively reduce freedom of choice. Still we might worry that this approach fails to respect individual choice because it subversively manipulates individuals, thus contravening their personal autonomy. In this article I address two arguments to this effect. First, I deny that choice architecture is necessarily heteronomous. I explain the reasons we have for avoiding heteronomous policy-making and offer a set of four conditions for non-heteronomy. I then provide examples of nudges that meet these conditions. I argue that these policies are capable of respecting and promoting personal autonomy, and show this claim to be true across contrasting conceptions of autonomy. Second, I deny that choice architecture is disrespectful because it is epistemically paternalistic. This critique appears to loom large even against non-heteronomous nudges. However, I argue that while some of these policies may exhibit epistemically paternalistic tendencies, these tendencies do not necessarily undermine personal autonomy. Thus, if we are to find such policies objectionable, we cannot do so on the grounds of respect for autonomy

    In Vitro and In Vivo Activity of a Palladacycle Complex on Leishmania (Leishmania) amazonensis

    Get PDF
    Leishmaniasis is an important public health problem with an estimated annual incidence of 1.5 million of new human cases of cutaneous leishmaniasis and 500,000 of visceral leishmaniasis. Treatment of the diseases is limited by toxicity and parasite resistance to the drugs currently in use, validating the need to develop new leishmanicidal compounds. We evaluated the killing by the palladacycle complex DPPE 1.2 of Leishmania (Leishmania) amazonensis, an agent of human cutaneous leishmaniasis in the Amazon region, Brazil. DPPE 1.2 destroyed promastigotes of L. (L.) amazonensis in vitro at nanomolar concentrations, whereas intracellular amastigotes were killed at drug concentrations 10-fold less toxic than those displayed to macrophages. L. (L.) amazonensis-infected BALB/c mice treated by intralesional injection of DPPE 1.2 exhibited a significant decrease of foot lesion sizes and a 97% reduction of parasite burdens when compared to untreated controls. Additional experiments indicated the inhibition of the cathepsin B activity of L. (L.) amazonensis amastigotes by DPPE 1.2. Further studies are needed to explore the potential of DPPE 1.2 as an additional option for the chemotherapy of leishmaniasis

    Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Get PDF
    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code

    Characterisation of a Peripheral Neuropathic Component of the Rat Monoiodoacetate Model of Osteoarthritis

    Get PDF
    Joint degeneration observed in the rat monoiodoacetate (MIA) model of osteoarthritis shares many histological features with the clinical condition. The accompanying pain phenotype has seen the model widely used to investigate the pathophysiology of osteoarthritis pain, and for preclinical screening of analgesic compounds. We have investigated the pathophysiological sequellae of MIA used at low (1 mg) or high (2 mg) dose. Intra-articular 2 mg MIA induced expression of ATF-3, a sensitive marker for peripheral neuron stress/injury, in small and large diameter DRG cell profiles principally at levels L4 and 5 (levels predominated by neurones innervating the hindpaw) rather than L3. At the 7 day timepoint, ATF-3 signal was significantly smaller in 1 mg MIA treated animals than in the 2 mg treated group. 2 mg, but not 1 mg, intra-articular MIA was also associated with a significant reduction in intra-epidermal nerve fibre density in plantar hindpaw skin, and produced spinal cord dorsal and ventral horn microgliosis. The 2 mg treatment evoked mechanical pain-related hypersensitivity of the hindpaw that was significantly greater than the 1 mg treatment. MIA treatment produced weight bearing asymmetry and cold hypersensitivity which was similar at both doses. Additionally, while pregabalin significantly reduced deep dorsal horn evoked neuronal responses in animals treated with 2 mg MIA, this effect was much reduced or absent in the 1 mg or sham treated groups. These data demonstrate that intra-articular 2 mg MIA not only produces joint degeneration, but also evokes significant axonal injury to DRG cells including those innervating targets outside of the knee joint such as hindpaw skin. This significant neuropathic component needs to be taken into account when interpreting studies using this model, particularly at doses greater than 1 mg MIA

    An overview of tissue engineering approaches for management of spinal cord injuries

    Get PDF
    Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed

    Thermal Stability of the Human Immunodeficiency Virus Type 1 (HIV-1) Receptors, CD4 and CXCR4, Reconstituted in Proteoliposomes

    Get PDF
    BACKGROUND: The entry of human immunodeficiency virus (HIV-1) into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4. METHODOLOGY/PRINCIPAL FINDINGS: We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (E(a)) of 269 kJ/mol (64.3 kcal/mol) and an inactivation temperature (T(i)) of 56°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an E(a) of 278 kJ/mol (66.5 kcal/mol), and a T(i) of 52.2°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules. CONCLUSIONS/SIGNIFICANCE: Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors

    A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information

    Full text link

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore