1,148 research outputs found

    PSY46 PSYCHOMETRIC ANALYSIS OFTHE THREE-FACTOR EATING QUESTIONNAIRE: RESULTS FROM A LARGE DIVERSE SAMPLE OF OBESE AND NON-OBESE SUBJECTS

    Get PDF

    Correspondence: Prostatic sarcoma after treatment for rectal cancer

    Get PDF

    The running coupling of 8 flavors and 3 colors

    Get PDF
    We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 8 flavors of massless fundamental Dirac fermions. The recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings allowing for a controlled continuum extrapolation. The results for the discrete beta-function show that it is monotonic without any sign of a fixed point in the range of couplings we cover. As a cross check the continuum results are compared with the well-known perturbative continuum beta-function for small values of the renormalized coupling and perfect agreement is found.Comment: 15 pages, 17 figures, published versio

    Lattice QCD at the physical point: Simulation and analysis details

    Get PDF
    We give details of our precise determination of the light quark masses m_{ud}=(m_u+m_d)/2 and m_s in 2+1 flavor QCD, with simulated pion masses down to 120 MeV, at five lattice spacings, and in large volumes. The details concern the action and algorithm employed, the HMC force with HEX smeared clover fermions, the choice of the scale setting procedure and of the input masses. After an overview of the simulation parameters, extensive checks of algorithmic stability, autocorrelation and (practical) ergodicity are reported. To corroborate the good scaling properties of our action, explicit tests of the scaling of hadron masses in N_f=3 QCD are carried out. Details of how we control finite volume effects through dedicated finite volume scaling runs are reported. To check consistency with SU(2) Chiral Perturbation Theory the behavior of M_\pi^2/m_{ud} and F_\pi as a function of m_{ud} is investigated. Details of how we use the RI/MOM procedure with a separate continuum limit of the running of the scalar density R_S(\mu,\mu') are given. This procedure is shown to reproduce the known value of r_0m_s in quenched QCD. Input from dispersion theory is used to split our value of m_{ud} into separate values of m_u and m_d. Finally, our procedure to quantify both systematic and statistical uncertainties is discussed.Comment: 45 page

    Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    Reconstructable final state kinematics and charge assignment in the reaction ppbar->ttbar allows tests of discrete strong interaction symmetries at high energy. We define frame dependent forward-backward asymmetries for the outgoing top quark in both the ppbar and ttbar rest frames, correct for experimental distortions, and derive values at the parton-level. Using 1.9/fb of ppbar collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the Fermilab Tevatron, we measure forward-backward top quark production asymmetries in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} = 0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references and change of tex

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa

    Measurement of the Ratios of Branching Fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) and B(Bs -> Ds pi) / B(Bd -> Dd pi)

    Get PDF
    Using 355 pb^-1 of data collected by the CDF II detector in \ppbar collisions at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23 (syst) improving the statistical uncertainty by more than a factor of two. We find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \times 10^{-3} and B(Bs -> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \times 10^{-3}.Comment: 7 pages, 2 figure
    corecore