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1 Introduction and summary

It is well-known that SU(3) gauge theory with Nf flavors of fundamental Dirac fermions has

a so-called conformal window [1, 2]. The window refers to the range of flavor numbers where

the theory possesses an infrared fixed point, i.e. the long distance behavior is conformal

but the short distance behavior is still asymptotically free. Clearly, Nf = 2 is outside

the window and Nf = 16 is inside because the perturbative β-function has a zero at

a coupling where perturbation theory is trustworthy. Unambiguously pinning down the

lower end of the conformal window has been nevertheless difficult so far because only ab

initio non-perturbative studies have a chance to settle the question but these same studies

are plagued by systematic uncertainties. It is important to note that these systematic

uncertainties are of a practical nature only and the associated error bars can in principle

be reduced to arbitrary small values. In currently available results with large fermion

content the systematic uncertainties were rarely, if at all, quantitatively estimated. These

are however important. The statistical uncertainties can be reduced by simply increasing

the statistics but after a certain point systematic uncertainties will dominate and further

increasing the statistics will be pointless.

The most important of the systematic uncertainties is related to the continuum limit.

In previous work we have considered Nf = 4 and performed a careful continuum extrapola-

tion; the Nf = 4 theory is well-known to be outside the conformal window and the results

obtained were consistent with this expectation. As the next step in approaching the lower

end of the conformal window we continue our investigation with Nf = 8 in the present

work and pay special attention to estimating the systematic uncertainties.

The question of finding the lower end of the conformal window is an interesting field

theory problem on its own, however there are reasons to be interested in the Nf = 8

model for phenomenological purposes. A large class of Beyond Standard Model extensions
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involve a composite Higgs particle. A natural framework for a composite Higgs state is

strong dynamics which solves the hierarchy problem of the Standard Model and gives rise

to dynamical electro-weak symmetry breaking. One challenge (among others) that all these

models should overcome is that they should contain a relatively light scalar particle, which

when coupled to the Standard Model is to be identified by the 125 GeV particle found at

the LHC in 2012. A light scalar might arise in strongly coupled non-abelian gauge theories

with many fermions if it is not far from the conformal window. Hence the Nf = 8 model

might play a useful role in studying the properties of the hypothetical composite Higgs.

Several aspects of the Nf = 8 model were studied in the past. The running coupling

using the Schroedinger functional was investigated in [3], the thermodynamics of the model

was studied in [4] and hadron spectroscopy was presented in [5, 6]. These studies agreed

in their conclusion that the model is outside the conformal window and spontaneous chiral

symmetry breaking takes place. In [7] the mass anomalous dimension was investigated but

a definite conclusion whether the model is inside or outside the conformal window could

not be drawn from the data. In any case conformal behavior was not ruled out. Finally [8]

studied the running coupling using our finite volume running coupling scheme [9, 10] as in

our present work and in section 5 we will comment on the relationship between our results

and the analysis in [8].

The organization of the paper is as follows. In section 2 we briefly summarize the fi-

nite volume gradient flow running coupling scheme that we use; for more details see [9, 10].

In section 3 the details of our numerical simulations are given and the collected data is

presented, while in section 4 the continuum extrapolation of the discrete β-function is

performed. Finally in section 5 we end with a conclusion and provide avenues for fu-

ture studies.

2 The gradient flow running coupling scheme

In order to investigate the infrared behavior of a model the running coupling is a natural

choice. There are many well-defined schemes and one is free to choose any one of them.

If the β-function in one scheme has a non-trivial zero indicating conformal behavior in

the infrared, its existence is universal in every other well-defined scheme. In the current

work the recently proposed finite volume gradient flow scheme [9, 10] is used, which is

based on Luscher’s Wilson flow [11–14] related to earlier constructions by Morningstar and

Peardon [15] as well as Lohmayer and Neuberger [16]. In this scheme a 1-parameter family

of couplings is defined in finite 4-volume by

g2c =
128π2〈t2E(t)〉

3(N2 − 1)(1 + δ(c))
, E(t) = −1

2
TrFµνFµν(t) , (2.1)

where N corresponds to the gauge group SU(N), t is the flow parameter, c =
√

8t/L is a

constant, E(t) is the field strength squared at t and

δ(c) = −c
4π2

3
+ ϑ4

(
e−1/c

2
)
− 1 , (2.2)
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where ϑ is the 3rd Jacobi elliptic function. The numerical factors are chosen such that at

leading order g2c = g2
MS

for all c. The gauge field is chosen to be periodic and the massless

fermions are anti-periodic in all 4 directions. The coupling gc(µ) runs via the scale µ = 1/L;

for more details on the gradient flow in general see [11–14] while more details on the finite

volume gradient flow scheme can be found in [9, 10].

A peculiar but well-known property of the femtoworld in a periodic box [17–25] or

small volume dynamics is that the perturbative expansion of g2c in gMS contains both even

and odd powers, g2c = g2
MS

(1 +O(gMS)) for N > 2. This property results in only the 1-loop

β-function coefficient being the same as the well-known coefficient in MS. The case of

N = 2 has been described in [10] and in the present work we focus on N = 3.

There are two considerations affecting the choice of the constant c of the 1-parameter

family. If chosen too small cut-off effects will be large, if chosen too large the statistical

errors will be large. In [9, 10] we have found for Nf = 4 that the value c = 3/10 was optimal

in this sense and will use c = 3/10 also in the current work. We will however show some

results at c = 1/5 in order to illustrate the c-dependence of our procedure. Henceforth the

index c will nevertheless be dropped and it will be clear from the context when c 6= 3/10.

The expression (2.1) for the coupling was so far considered in the continuum. In a

previous work [26] we have determined the lattice spacing dependence of the tree-level

correction factor δ(c). The tree-level, finite volume and finite lattice spacing perturbative

calculation led to the expression

1 + δ(c, a/L) =
2π2c4

3
+
π2c4

3

L/a−1∑
nµ=0, n2 6=0

Tr
(
e−t(S

f+G)(Sg + G)−1e−t(S
f+G)Se

)
, (2.3)

where pµ = 2πnµ/L with an integer non-zero 4-vector nµ and Sf,g,e(p) are the tree-level

expressions for the action along the flow, dynamical gauge action and the observable in mo-

mentum space, respectively and G(p) is a gauge fixing term. The finite lattice momentum

sums can easily be evaluated numerically to arbitrary precision. See [26] for more details.

This expression can be used to tree-level improve the coupling by simply introducing

g2 =
128π2〈t2E(t)〉

3(N2 − 1)(1 + δ(c, a/L))
. (2.4)

However, we have found that even though tree-level improvement worked very well in

reducing the slope of the continuum extrapolations with Nf = 4 in [26] it only reduced

the slope for small g2 and actually increased it for larger g2 in the current work with

Nf = 8. The reason probably lies in the fact that the larger Nf is, the larger the fermion

loop contributions are. And of course tree-level improvement is not sensitive to fermionic

radiative corrections. We will illustrate these issues in some select cases in section 4.

It should be noted that Schroedinger functional boundary conditions can also be im-

plemented together with the gradient flow leading to a closely related scheme [27–31]. An

advantage of the periodic boundary conditions used in the present work is that translational

symmetry is not broken in the time direction. A third option is using twisted boundary

conditions which was explored for SU(2) pure gauge theory to high precision in [32].
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The application of the gradient flow is not by any means limited to running coupling

studies, applications also include scale setting in QCD [33–36], thermodynamics [37], renor-

malized energy momentum tensor [38–40], various aspects of chiral symmetry [41–43] and

scalar glueballs [44].

3 Numerical simulation

The technical details of the simulations closely follow our work on Nf = 4 in [9, 10]. In

particular we use the staggered fermion action with 4 steps of stout improvement with

% = 0.12 [15]. The bare fermion mass is set to zero and anti-periodic boundary conditions

in all four directions are imposed on the fermions and the gauge field is periodic. The

gauge action is the tree-level improved Symanzik action [45, 46]. The observable E(t) is

discretized by the clover-type construction as in [12].

Along the gradient flow we use two discretizations, the Wilson plaquette action and

the tree-level improved Symanzik gauge action. These setups correspond to the WSC

and SSC cases in the terminology of [26]: the notation is Flow-Action-Observable and W

stands for Wilson plaquette action, S for tree-level improved Symanzik action and C for the

clover discretization. Both setups lead to the same continuum limit, only the size of cut-off

effects is different. This fact allows for the introduction of yet another coupling definition

at finite lattice spacing, which however again leads to the same continuum limit [47],

g2X = Xg2SSC + (1−X)g2WSC . (3.1)

Here the parameter X is arbitrary, the choice of the two coefficients, X and 1−X, guar-

antees that the continuum limit of g2X is the same as that of g2SSC or g2WSC , i.e. the correct

one. It is important to note that X is a constant and does not depend on the bare gauge

coupling β or the lattice volume L/a. In practice we have found that the choice X = 1.75

is most useful. Note that in principle X could depend on the renormalized coupling but in

the present work we do not explore this possibility.

Just as in [9, 10] where Nf = 4 was considered we do not need to take the root of the

fermion determinant. Hence the results do not depend on the validity of the fourth-root-

trick commonly used for QCD. The evolution along a trajectory of the hybrid Monte Carlo

algorithm [48] is implemented with multiple time scales [49] and Omelyan integrator [50].

In a lattice setting the most practical method of calculating the running coupling or

its β-function is via step scaling [51, 52]. In this context the linear size L is increased by a

factor s and the difference of couplings

g2(sL)− g2(L)

log(s2)
, (3.2)

is defined as the discrete β-function. If the ordinary infinitesimal β-function of the theory

possesses an infrared fixed point, the discrete β-function will have a zero as well. On the

lattice the linear size L is easily increased to sL by simply increasing the volume in lattice

units, L/a → sL/a at fixed bare gauge coupling. In the current work we set s = 3/2 and

use volumes 124 → 184, 164 → 244, 204 → 304 and 244 → 364. The continuum limit
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L/a β 3.5 3.6 3.7 4.0 4.5 5.0

12 6.42(4) 5.85(4) 5.29(2) 4.00(2) 2.775(7) 2.12(1)

16 7.66(6) 6.94(4) 6.28(2) 4.67(4) 3.19(1) 2.43(2)

18 8.17(7) 6.6(1) 4.95(3) 3.36(2) 2.52(1)

20 8.55(5) 7.77(4) 6.98(3) 5.17(3) 3.51(2) 2.63(1)

24 9.33(8) 8.51(5) 5.50(7) 3.68(2) 2.76(2)

30 10.4(1) 8.3(1) 6.03(9) 4.02(4) 2.93(3)

36 10.2(1) 6.52(8) 4.19(4) 3.07(4)

L/a β 6.0 7.0 8.0 9.5 15.0

12 1.444(6) 1.098(4) 0.890(2) 0.696(2) 0.383(2)

16 1.64(1) 1.242(6) 1.000(6) 0.774(3) 0.426(1)

18 1.704(6) 1.288(4) 1.035(7) 0.799(4) 0.437(1)

20 1.757(8) 1.322(5) 1.062(5) 0.820(1) 0.449(2)

24 1.84(1) 1.376(7) 1.099(6) 0.847(4) 0.463(2)

30 1.93(2) 1.43(1) 1.141(4) 0.880(4) 0.481(3)

36 2.00(2) 1.48(2) 1.17(1) 0.90(1)

Table 1. Measured renormalized couplings g2(L) for given bare couplings β and lattice sizes L/a

using the linear combination method with X = 1.75 at c = 3/10.

corresponds to L/a → ∞. These lattice volumes determine the β-function at 4 lattice

spacings, allowing for a fully controlled continuum extrapolation. Leading cut-off effects

are known to be O(a2/L2).

The collected number of thermalized trajectories at each bare coupling and volume

was in the range between 5000 and 10000 and every 10th was used for measurement. The

measured renormalized couplings at each β and lattice volume are shown in table 1 for

the definition (3.1) using X = 1.75. By taking the difference of renormalized couplings for

lattice volumes scaled by a factor s = 3/2 and at the same bare β one obtains the discrete

β-function at finite lattice spacings; see figure 1. Clearly, there is no sign of a fixed point,

the running is monotonically increasing, at least at finite lattice spacing, i.e. finite lattice

volumes. However we are of course interested in the behavior of the continuum model and

the behavior of the discrete β-function on finite lattice volumes is irrelevant. It is a priori

possible that the discrete β-functions on several finite lattice volumes, corresponding to a

fixed set of L/a → sL/a steps, cross zero but the continuum extrapolated result does not

have a zero and conversely it is possible that none of the finite lattice volume β-functions

cross zero yet the continuum extrapolated result does have a zero. Hence we turn to the

continuum extrapolation next.
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Figure 1. Measured discrete β-function for the linear combination setup with X = 1.75 and

c = 3/10; data corresponding to four lattice spacings.

4 Continuum extrapolation

In order to perform a continuum extrapolation we parametrize the renormalized coupling

as a function of the bare coupling, g2(β) at each fixed lattice volume L/a by

1

g2(β)
=
β

6

n∑
m=0

Cm

(
6

β

)m
, (4.1)

similarly as in [53]. The order n of the polynomial may be chosen such that acceptable fits

are obtained, however in this work we would like to estimate the systematic errors that

come from various choices for n; see section 4.1.

Using the parametrized curves the discrete β-function (3.2) can be obtained for arbi-

trary g2(L) for fixed L/a and s = 3/2. Estimating the error on the interpolated values is

straightforward because the interpolation is linear in the fit parameters Cm. Then assuming

that corrections are linear in a2/L2 the continuum extrapolation can be performed.

4.1 Systematic error

In our previous work [9, 10] the polynomial order for the interpolation (4.1) was fixed at

each lattice volume. However different choices lead to similarly acceptable interpolating

fits and these in turn lead to slightly different continuum results. Even though the final

continuum result varies only a bit and generally within 1-σ of the statistical error in the

current work we would like to estimate the systematic error as precisely as possible. In

– 6 –



J
H
E
P
0
6
(
2
0
1
5
)
0
1
9

order to achieve this the histogram method introduced in [56] is used. There are two sources

of systematic uncertainties. First, it is a priori unknown what interpolation function to use

for the renormalized coupling as a function of β at fixed lattice volumes, and second, one

may perform continuum extrapolations using 3 or 4 lattice spacings.

We interpolate using (4.1) for each lattice volume, 124, 164, 184, 204, 244, 304, 364, with

three choices of polynomial orders, n = 4, 5 and 6. All together these produce 37 = 2187

combination of interpolations and correspondingly lead to 2187 different continuum re-

sults. Since the data on different volumes at different β are all independent we perform a

Kolmogorov-Smirnov test on the 2187 interpolations and demand that only those assign-

ments of polynomial orders are allowed to which the Kolmogorov-Smirnov test assigns at

least a 30% probability, similarly to [54].

The Kolmogorov-Smirnov test is applied as follows [54]. The χ2 values of independent

fits are distributed according to the χ2-distribution. The goodness of fits, or q-values, are

on the other hand distributed uniformly. The Kolmogorov-Smirnov test is an estimate

of the probability that the actual measured q-values were indeed distributed uniformly.

The cumulative distribution function of the uniform distribution is a straight line and

the Kolmogorov-Smirnov test takes as input the largest distance between the actual mea-

sured cumulative distribution function and the expected cumulative distribution function

(straight line). Call this largest distance D. Then the Kolmogorov-Smirnov probability is

defined by

P = Q

(
D

(√
N + 0.12 +

0.11√
N

))
, Q(x) = 1− ϑ4

(
e−2x

2
)

(4.2)

where ϑ4 is the 4th Jacobi elliptic function and N is the sample size [55].

The Kolmogorov-Smirnov test with P > 0.3 reduced the total number of allowed

interpolations from 2187 to 1233 as far as 4 lattice spacings are concerned corresponding

to 124 → 184, 164 → 244, 204 → 304 and 244 → 364.

In order to include the systematic uncertainty from the continuum extrapolation it-

self, as opposed to the interpolation at fixed lattice volume, we consider dropping the

roughest lattice spacing corresponding to 124 → 184 and use only 164 → 244, 204 → 304

and 244 → 364. From the 1233 continuum extrapolations using 4 lattice spacings only

those extrapolations using 3 lattice spacings are kept to which again the Kolmogorov-

Smirnov test assigns a probability larger than 30%, in terms of the 5 independent volumes,

164, 204, 244, 304, 364. This test leads to 813 continuum extrapolations using 3 lattice spac-

ings. Some of these are of course the same, but needs to be counted in order to have the

proper weight in the final histogram.

The 1233 + 813 = 2046 continuum results at each g2(L) can be binned in a weighted

histogram and the weight can be the goodness of the fit, a weight provided by the Akaike

information criterion (AIC) [57–59] or no weight at all. If a fit has p free parameters its

associated AIC weight is ∼ exp(−χ2/2 − p). Examples of AIC-weighted histograms are

shown in figures 2–3.

Our continuum central values at each g2(L) are the medians of the histograms and

the systematic uncertainty can then be determined by counting 68% of the total starting
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Figure 2. Right: the weighted histograms of all possible continuum extrapolations used for esti-

mating the systematic uncertainty. Left: a representative example of the continuum extrapolations

for g2(L) = 1.0, 2.0, 3.0; the 1-loop and 2-loop results are also shown for comparison. All data is

with c = 3/10 and using the linear combination method with X = 1.75.

symmetrically from the central value. The three types of weights lead to compatible results

and for our final results we use the AIC-weighted histograms.

The systematic and statistical errors are of the same order, there is never a larger

factor between them than two.

4.2 Final results

At 6 chosen values of g2(L) the histograms of the discrete β-function for all continuum

extrapolations are shown in the right panels of figures 2–3. On the left we show typical

continuum extrapolations from within a 1 − σ systematic uncertainty around the median

of the histograms. Clearly, all 4 lattice spacings are in the scaling region and nicely fit on

a straight line with good χ2/dof . In fact, the choice X = 1.75 was motivated by exactly
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Figure 3. Right: the weighted histograms of all possible continuum extrapolations used for esti-

mating the systematic uncertainty. Left: a representative example of the continuum extrapolations

for g2(L) = 4.0, 5.0, 6.0; the 1-loop and 2-loop results are also shown for comparison. All data is

with c = 3/10 and using the linear combination method with X = 1.75.

the requirement that all 4 lattice spacings should be in the scaling region. This is not a

sharp requirement, one may choose any value in the approximate range 1.6 < X < 1.9.

It is quite instructive to look at the details of these figures and discuss the source

of the most important systematic error, the continuum extrapolation. Our theory is a

confining one in which large bare couplings (small βs) correspond to large lattice spacings.

As table 1 shows large renormalized couplings are obtained with large lattice volumes and

small β values. Thus, for a given renormalized coupling one reaches the continuum limit

by increasing both β and the lattice volume. Since the largest volume, independently of β,

was 364, large renormalized couplings correspond within our parameter set to large lattice

spacings and obviously large cutoff effects.

It is of obvious interest to turn this qualitative statement to a quantitative one and

to determine the size of the systematic uncertainty related to this question. Most impor-
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tantly, we want to know where to stop with the present lattice sizes because no controlled

continuum extrapolation can be carried out any further. As our g2 = 6 case illustrates

for this large value of the renormalized coupling one has a two peak structure for the his-

togram. The two peaks are the result of the significant difference between using only the

finer lattices with 3 points or taking 4 points (including also the coarsest lattices) for the

continuum extrapolations. This phenomenon clearly indicates that the results from the

coarsest lattices are starting to deviate from the a2 scaling showed by the finer lattices.

The difference between the peaks still quantifies the systematic uncertainty for g2 = 6 and

tells us that for even larger g2 values the control over this systematic effect could be lost

and finer lattices with larger lattice volumes are needed.

The discrete β-function may reliably be calculated in (continuum) perturbation theory

for small values of the renormalized coupling. In terms of the well-known infinitesimal 1

and 2 loop β-function coefficients, b1 and b2 the discrete variant is given by

g2(sL)− g2(L)

log(s2)
= b1

g4(L)

16π2
+
(
b21 log(s2) + b2

) g6(L)

(16π2)2
+ . . . (4.3)

As noted already in our finite volume gradient flow scheme only b1 is the same as in every

other well-defined scheme. The reason is a well-understood feature of the finite 4-volume or

femtoworld [9, 10]. Nevertheless we include not only the 1-loop continuum β-function but

also the 2-loop approximation in our comparisons, even though strictly speaking agreement

is only expected with the 1-loop result.

Had we not used the linear combination (3.1) only 3 lattice spacings would have been in

the scaling region, 164 → 244, 204 → 304 and 244 → 364 assuming a fit linear in O(a2/L2).

As mentioned in section 3 tree-level improvement [26] did not reduce the slope of the

continuum extrapolations as dramatically as for Nf = 4 in our previous study. The reason

is presumably that the larger fermion content results in larger fermionic contributions

which are, of course, completely absent from the tree-level expressions. We illustrate both

points, the smaller scaling region without employing the linear combination (3.1) and the

less effective tree-level improvement in figure 4. Clearly, the continuum results are always

consistent, as they should be, the various choices (improvement vs. non-improvement,

linear combination vs. no linear combination) only affect the slopes of the extrapolations

and the size of the scaling region.

In figure 5 we illustrate another aspect mentioned in section 3, namely c-dependence.

Different choices of c define different schemes, i.e. the β-function will be c-dependent. For

small coupling the difference should be very small since regardless of what c is, agreement

is expected with the perturbative 1-loop result. Furthermore, the expectation is that a

smaller c leads to smaller statistical errors because of smaller autocorrelations and also to

larger cut-off effects because of the smaller flow time t. This is illustrated in figure 5 where

the continuum extrapolation is shown for g2 = 3 and both for c = 3/10 and c = 1/5.

Finally, in figure 6 we show the continuum extrapolated β-function over the entire 0.9 <

g2 < 6.3 range accessible to our simulations together with the 1-loop and 2-loop results.

The linear combination method (3.1) was used with X = 1.75 and c = 3/10 was chosen.

Our non-perturbative continuum result is in nice agreement with the perturbative results
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Figure 4. Comparison of the tree-level improved and unimproved continuum extrapolations for the

SSC and WSC cases at c = 3/10. Clearly the roughest lattice spacing corresponding to 124 → 184

is not in the scaling region. The choice X = 1.75 does bring this point also into the scaling region

however; see text for details.
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Figure 5. Continuum limit of the (unimproved) SSC setup at g2(L) = 3.0; comparing c = 2/10

(left) and c = 3/10 (right). Clearly, as c increases the cut-off effects become smaller but the

statistical errors grow. The continuum extrapolations do not have to agree since different c values

correspond to different schemes.

for small renormalized coupling and deviates from it for larger values. Most importantly,

the deviation from the perturbative 1-loop result is downward. This could have been

expected because at some higher Nf value we do expect a fixed point and by continuity

one might argue that this is only possible if the running is slower than the monotonically

increasing 1-loop result, at least for some Nf value which is not far below the conformal

window. At Nf = 8 we do not see a sign of a fixed point in any case, at least in the

explored range 0.9 < g2 < 6.3.
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Figure 6. Our final result for the continuum extrapolated discrete β-function.

5 Conclusion and outlook

In this work we have continued our study of SU(3) gauge theory with many fermions. The

representation was fundamental and after having examined Nf = 4 in our previous work

the β-function of the Nf = 8 model was computed in the present work, in the continuum.

The β-function does not appear to “bend back” in the coupling range we have studied

hence does not support the idea that the Nf = 8 model is already inside the conformal

window. This result is consistent with our study of the mass spectrum which indicated

spontaneous breaking of chiral symmetry at zero fermion mass [5]. The running coupling

does deviate from the perturbative β-function downwards though.

While preparing our manuscript the work [8] appeared. The method used there is

similar to ours and the conclusions were also similar, i.e. the behavior was compatible

with a monotonically increasing β-function. The explored coupling range was larger, 2.0 <

g2 < 14, but the continuum results were not compatible with weak coupling perturbation

theory even at the weakest coupling g2 = 2. This is a puzzling feature since one would

expect perturbation theory to be reliable at such a small coupling. At g2 = 2 the difference

between the 1-loop and 4-loop (in MS) result is about 1% suggesting that perturbation

theory is indeed trustworthy (we expect the odd terms in the gauge coupling to be small

as well). The difference between the 1-loop and the continuum extrapolated result of [8] is

however around 40%.1

In our work we in fact show consistency with perturbation theory up to approximately

g2 = 5 and only detect deviations for larger couplings which is more in line with expecta-

tions. The reason for the discrepancy in [8] might be due to the fact that the systematic

uncertainties were not adequately addressed. In our work we controlled both types, one

from the a priori unknown interpolation as a function of the bare coupling at finite lattice

volume and also the one coming from the continuum extrapolation.

1We would like to thank the referee for pointing out that the discrepancy is 2.5σ between the lattice

result [8] and perturbation theory in a finite range of the weak coupling regime.
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[46] M. Lüscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys.

97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].

[47] A. Ramos, The Yang-Mills gradient flow and renormalization, talk at Lattice 2014, Columbia

University, New York U.S.A. (2014).

[48] S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B

195 (1987) 216 [INSPIRE].

[49] J.C. Sexton and D.H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo

algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].

[50] T. Takaishi and P. de Forcrand, Testing and tuning new symplectic integrators for hybrid

Monte Carlo algorithm in lattice QCD, Phys. Rev. E 73 (2006) 036706 [hep-lat/0505020]

[INSPIRE].
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