79 research outputs found

    Physically meaningful uncertainty quantification in probabilistic wind turbine power curve models as a damage-sensitive feature

    Get PDF
    A wind turbines’ power curve is an easily accessible form of damage-sensitive data, and as such is a key part of structural health monitoring (SHM) in wind turbines. Power curve models can be constructed in a number of ways, but the authors argue that probabilistic methods carry inherent benefits in this use case, such as uncertainty quantification and allowing uncertainty propagation analysis. Many probabilistic power curve models have a key limitation in that they are not physically meaningful – they return mean and uncertainty predictions outside of what is physically possible (the maximum and minimum power outputs of the wind turbine). This paper investigates the use of two bounded Gaussian processes (GPs) in order to produce physically meaningful probabilistic power curve models. The first model investigated was a warped heteroscedastic Gaussian process, and was found to be ineffective due to specific shortcomings of the GP in relation to the warping function. The second model – an approximated GP with a Beta likelihood was highly successful and demonstrated that a working bounded probabilistic model results in better predictive uncertainty than a corresponding unbounded one without meaningful loss in predictive accuracy. Such a bounded model thus offers increased accuracy for performance monitoring and increased operator confidence in the model due to guaranteed physical plausibility

    Effect of Xe ion (167 MeV) irradiation on polycrystalline SiC implanted with Kr and Xe at room temperature

    Get PDF
    The effect of swift heavy ion (Xe 167 MeV) irradiation on polycrystalline SiC individually implanted with 360 keV Kr and Xe ions at room temperature to fluences of 2×1016 cm-2 and 1×1016 cm-2 respectively, was investigated using transmission electron microscopy (TEM), Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Implanted specimens were each irradiated with 167 MeV Xe+26 ions to a fluence of 8.3×1014 cm-2 at room temperature. It was observed that implantation of 360 keV Kr and Xe ions individually at room temperature amorphized the SiC from the surface up to a depth of 186 and 219 nm respectively. Swift heavy ion (SHI) irradiation reduced the amorphous layer by about 27 nm and 30 nm for the Kr and Xe samples respectively. Interestingly, the reduction in the amorphous layer was accompanied by the appearance of randomly oriented nanocrystals in the former amorphous layers after SHI irradiation in both samples. Previously, no similar nanocrystals were observed after SHI irradiations at electron stopping powers of 33 keV/nm and 20 keV/nm to fluences below 1014 cm-2. Therefore, our results suggest a fluence threshold for the formation of nanocrystals in the initial amorphous SiC after SHI irradiation. Raman results also indicated some annealing of radiation damage after swift heavy ion irradiation and the subsequent formation of small SiC crystals in the amorphous layers. No diffusion of implanted Kr and Xe was observed after swift heavy ion irradiation.National Research Foundation (NRF)http://iopscience.iop.org0022-37272016-10-20hb201

    The Dipion Mass Spectrum In e+e- Annihilation and tau Decay: A Dynamical (rho0, omega, phi) Mixing Approach

    Full text link
    We readdress the problem of finding a simultaneous description of the pion form factor data in e+e- annihilations and in tau decays. For this purpose, we work in the framework of the Hidden Local Symmetry (HLS) Lagrangian and modify the vector meson mass term by including the pion and kaon loop contributions. This leads us to define the physical rho, omega and phi fields as linear combinations of their ideal partners, with coefficients being meromorphic functions of s, the square of the 4--momentum flowing into the vector meson lines. This allows us to define a dynamical, i.e. s-dependent, vector meson mixing scheme. The model is overconstrained by extending the framework in order to include the description of all meson radiative (V P gamma and P gamma gamma couplings) and leptonic (Ve+e- couplings) decays and also the isospin breaking (omega/ phi --> pi+ pi-) decay modes. The model provides a simultaneous, consistent and good description of the e+e- and tau dipion spectra. The expression for pion form factor in the latter case is derived from those in the former case by switching off the isospin breaking effects specific to e+e- and switching on those for tau decays. Besides, the model also provides a good account of all decay modes of the form V P gamma, Pgamma gamma as well as the isospin breaking decay modes. It leads us to propose new reference values for the rho^0 --> e+ e- and omega --> pi+ pi- partial widths which are part of our description of the pion form factor. Other topics (phi --> K anti K, the rho meson mass and width parameters) are briefly discussed. Therefore, we confirm the 3.3 sigma discrepancy between the theoretical estimate of a_mu based on e+e- and its direct BNL measurement.Comment: 71 pages, 8 figures. Accepted by EPJ C. Version 3: correct minor typos, minor changes spread out into the text. Extension of Sections 12.2 and 12.3.5 and introduction of the new Appendix

    Aggregate structure of hydroxyproline-rich glycoprotein (HRGP) and HRGP assisted dispersion of carbon nanotubes

    Get PDF
    Hydroxyproline-rich glycoproteins (HRGP) comprise a super-family of extracellular structural glycoproteins whose precise roles in plant cell wall assembly and functioning remain to be elucidated. However, their extended structure and repetitive block co-polymer character of HRGPs may mediate their self-assembly as wall scaffolds by like-with-like alignment of their hydrophobic peptide and hydrophilic glycopeptide modules. Intermolecular crosslinking further stabilizes the scaffold. Thus the design of HRGP-based scaffolds may have practical applications in bionanotechnology and medicine. As a first step, we have used single-molecule or single-aggregate atomic force microscopy (AFM) to visualize the structure of YK20, an amphiphilic HRGP comprised entirely of 20 tandem repeats of: Ser-Hyp4-Ser-Hyp-Ser-Hyp4-Tyr-Tyr-Tyr-Lys. YK20 formed tightly aggregated coils at low ionic strength, but networks of entangled chains with a porosity of ~0.5–3 μm at higher ionic strength. As a second step we have begun to design HRGP-carbon nanotube composites. Single-walled carbon nanotubes (SWNTs) can be considered as seamless cylinders rolled up from graphene sheets. These unique all-carbon structures have extraordinary aromatic and hydrophobic properties and form aggregated bundles due to strong inter-tube van der Waals interactions. Sonicating aggregated SWNT bundles with aqueous YK20 solubilized them presumably by interaction with the repetitive, hydrophobic, Tyr-rich peptide modules of YK20 with retention of the extended polyproline-II character. This may allow YK20 to form extended structures that could potentially be used as scaffolds for site-directed assembly of nanomaterials

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol- increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The Driver-Car.

    Get PDF
    The car has become ubiquitous in late modern society and has become the leading object in the ordinary social relations of mobility. Despite its centrality to the culture and material form of modern societies, the relationship between the car and human beings has remained largely unexplored by sociology. This article argues that cars are combined with their drivers into an assemblage, the ‘driver-car’, which has become a form of social being that brings about distinctive social actions in modern society – driving, transporting, parking, consuming, polluting, killing, communicating and so on. To understand the nature of this assemblage a number of theoretical perspectives that describe the interaction and collaboration between human beings and complex objects are explored; the process of driving, ‘affordance’, actor-network theory, and the embodied relationship between driver and car. This theoretical account of the driver-car is intended as a preliminary to the empirical investigation of the place of the driver-car in modern societies
    corecore