470 research outputs found

    A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions

    Get PDF
    A new algorithm is proposed to combine the split-frequency harmonic balance method (SF-HBM) with arc-length continuation (ALC) for accurate tracing of the frequency response of oscillators with non-expansible nonlinearities. ALC is incorporated into the SF-HBM in a two-stage procedure: Stage I involves finding a reasonably accurate response frequency and solution using a relatively large number of low-frequency harmonics. This step is achieved using the SF-HBM in conjunction with ALC. Stage II uses the SF-HBM to obtain a very accurate solution at the frequency obtained in Stage I. To guarantee rapid path tracing, the frequency axis is appropriately subdivided. This gives high chance of success in finding a globally optimum set of harmonic coefficients. When approaching a turning point however, arc-lengths are adaptively reduced to obtain a very accurate solution. The combined procedure is tested on three hardening stiffness examples: a Duffing model; an oscillator with non-expansible stiffness and single harmonic forcing; and an oscillator with non-expansible stiffness and multiple-harmonic forcing. The results show that for non-expansible nonlinearities and multiple-harmonic forcing, the proposed algorithm is capable of tracing-out frequency response functions with high accuracy and efficiency

    Mode regularization of the susy sphaleron and kink: zero modes and discrete gauge symmetry

    Full text link
    To obtain the one-loop corrections to the mass of a kink by mode regularization, one may take one-half the result for the mass of a widely separated kink-antikink (or sphaleron) system, where the two bosonic zero modes count as two degrees of freedom, but the two fermionic zero modes as only one degree of freedom in the sums over modes. For a single kink, there is one bosonic zero mode degree of freedom, but it is necessary to average over four sets of fermionic boundary conditions in order (i) to preserve the fermionic Z2_2 gauge invariance ψ→−ψ\psi \to -\psi, (ii) to satisfy the basic principle of mode regularization that the boundary conditions in the trivial and the kink sector should be the same, (iii) in order that the energy stored at the boundaries cancels and (iv) to avoid obtaining a finite, uniformly distributed energy which would violate cluster decomposition. The average number of fermionic zero-energy degrees of freedom in the presence of the kink is then indeed 1/2. For boundary conditions leading to only one fermionic zero-energy solution, the Z2_2 gauge invariance identifies two seemingly distinct `vacua' as the same physical ground state, and the single fermionic zero-energy solution does not correspond to a degree of freedom. Other boundary conditions lead to two spatially separated ω∌0\omega \sim 0 solutions, corresponding to one (spatially delocalized) degree of freedom. This nonlocality is consistent with the principle of cluster decomposition for correlators of observables.Comment: 32 pages, 5 figure

    Noncommutative Electromagnetism As A Large N Gauge Theory

    Full text link
    We map noncommutative (NC) U(1) gauge theory on R^d_C X R^{2n}_{NC} to U(N -> \infty) Yang-Mills theory on R^d_C, where R^d_C is a d-dimensional commutative spacetime while R^{2n}_{NC} is a 2n-dimensional NC space. The resulting U(N) Yang-Mills theory on R^d_C is equivalent to that obtained by the dimensional reduction of (d+2n)-dimensional U(N) Yang-Mills theory onto R^d_C. We show that the gauge-Higgs system (A_\mu,\Phi^a) in the U(N -> \infty) Yang-Mills theory on R^d_C leads to an emergent geometry in the (d+2n)-dimensional spacetime whose metric was determined by Ward a long time ago. In particular, the 10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry arising from the 4-dimensional N=4 vector multiplet in the AdS/CFT duality. We further elucidate the emergent gravity by showing that the gauge-Higgs system (A_\mu,\Phi^a) in half-BPS configurations describes self-dual Einstein gravity.Comment: 25 pages; More clarifications, to appear in Eur. Phys. J.

    Sources for Chern-Simons theories

    Full text link
    The coupling between Chern-Simons theories and matter sources defined by branes of different dimensionalities is examined. It is shown that the standard coupling to membranes, such as the one found in supergravity or in string theory, does not operate in the same way for CS theories; the only p-branes that naturally couple seem to be those with p=2n; these p-branes break the gauge symmetry (and supersymmetry) in a controlled and sensible manner.Comment: 17 pages, Dedicated to Claudio Bunster on the occasion of his 60th birthday. To appear in Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicit

    Deep Inelastic Scattering from off-Shell Nucleons

    Full text link
    We derive the general structure of the hadronic tensor required to describe deep-inelastic scattering from an off-shell nucleon within a covariant formalism. Of the large number of possible off-shell structure functions we find that only three contribute in the Bjorken limit. In our approach the usual ambiguities encountered when discussing problems related to off-shellness in deep-inelastic scattering are not present. The formulation therefore provides a clear framework within which one can discuss the various approximations and assumptions which have been used in earlier work. As examples, we investigate scattering from the deuteron, nuclear matter and dressed nucleons. The results of the full calculation are compared with those where various aspects of the off-shell structure are neglected, as well as with those of the convolution model.Comment: 36 pages RevTeX, 9 figures (available upon request), ADP-93-210/T128, PSI-PR-93-13, accepted for publication in Physical Review

    Chiral Analysis of Quenched Baryon Masses

    Get PDF
    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading non-analytic behaviour (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Measurement of ΜˉΌ\bar{\nu}_{\mu} and ΜΌ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(ΜΌ+nucleus→Ό−+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(ΜˉΌ+nucleus→Ό++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(Μˉ)σ(Îœ))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K Μˉ/Îœ\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of ΞΌ\theta_{\mu}500 MeV/c. The results are σ(Μˉ)=(0.900±0.029(stat.)±0.088(syst.))×10−39\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
    • 

    corecore