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Chiral analysis of quenched baryon masses
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We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and
the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise
to the leading and next-to-leading nonanalytic behavior~and hence the most rapid variation in the region of
light quark mass!, we find surprisingly little curvature in the quenched case. Replacing these meson-loop
self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results
of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass
splitting between these baryons.

DOI: 10.1103/PhysRevD.66.094507 PACS number~s!: 12.38.Gc, 12.38.Aw, 12.39.Fe, 12.40.Yx
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I. INTRODUCTION

The quenched approximation is a widely used tool
studying nonperturbative QCD within numerical simulatio
of lattice gauge theory. With an appropriate choice of
lattice scale and at moderate to heavy quark masses,
approximation has been shown to give only small, system
deviations from the results of full QCD with dynamical fe
mions. Although no formal connection has been establis
between full and quenched QCD, the similarity of the resu
has led to the belief that the effects of quenching are sm
and hence that quenched QCD provides a reasonable
proximation to the full theory@1#.

Improved lattice actions, together with advances in h
performance computing, have been responsible for sig
cant improvements in the calculation of baryon masse
moderate to light quark masses within the quenched appr
mation @2–5#. Simulations with dynamical fermions hav
proven to be more difficult, but results have been repor
with pion masses as low as 320 MeV@4,6#.

The fact that one is restricted to quark masses much la
than the physical values means that, in addition to all
usual extrapolations~e.g., to the infinite volume and con
tinuum limits!, if one wants to compare with empirical had
ron observables, one must also have a reliable metho
extrapolation to the chiral limit. Any such extrapolation mu
incorporate the appropriate chiral corrections, arising fr
Goldstone boson loops, which give rise to rapid, nonlin
variations as the chiral limit is approached.

Studies of the exactly soluble Euler-Heisenberg probl
@7#, suggest that one can develop surprisingly accurate
trapolation functions, provided one builds in the correct b
havior in both the small and large mass limits. For QCD
Leinweberet al. @8# have suggested an extrapolation meth
which ensures both the exact low mass limit of chiral pert
bation theory@technically its leading~LNA ! and next-to-
leading nonanalytic~NLNA ! behavior# and the heavy quark
limit of heavy quark effective theory~HQET!. The transition
between the chiral and heavy quark regimes is character
0556-2821/2002/66~9!/094507~10!/$20.00 66 0945
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by a mass scaleL, related to the inverse of the size of th
pion cloud source.

This approach is equivalent to the formulation of chir
perturbation theory (xPT! using a finite-range regulator with
extent governed byL @9#. The resummation of the chira
expansion arising from the finite-range regulator suppres
the rapid nonanalytic variation of hadron properties once
pion Compton wavelength is smaller than this scale~i.e.
mp.L). The importance of incorporating such behavior h
been successfully demonstrated for a number of hadro
observables, including masses@8,10#, the sigma commutato
@11#, magnetic moments@12–15#, charge radii@16# and par-
ton distribution functions@17–19#.

The impressive results found using these methods h
led us to the present investigation of the problem of
chiral extrapolation of baryon masses in quenched QCD.
chiral properties within the quenched approximation a
known to differ from those of full QCD in a number of ver
interesting ways@20–25#. For example, not only are the e
fective couplings at the pion-baryon vertices significantly
tered in quenched QCD~QQCD! but, because theh8 be-
haves as a Goldstone boson in QQCD, one must a
considerh8 loops.

Here we first review previous work@8# which reported a
successful method for extrapolating baryon masses as ca
lated in full QCD lattice simulations. The modified chira
structure of quenched baryon masses@23# is presented next
We show how to construct the various meson loop indu
self-energies @26# in order to preserve the leading
nonanalytic and next-to-leading nonanalytic structure app
priate to QQCD, while incorporating the established beh
ior at heavier quark masses. This is followed by a detai
application to the extrapolation of the quenchedN and D
masses to the chiral limit. Finally, we use the observed si
larity of the structure of baryons stripped of their Goldsto
boson clouds, in full and quenched QCD, to explore whet
one can make a connection between the masses calculat
QQCD and those obtained in a dynamical simulation. T
remarkable agreement obtained suggests a number of fu
tests and also leads us, with considerable confidence, t
interpretation of the origin of theN-D mass splitting.
©2002 The American Physical Society07-1
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II. QCD EXTRAPOLATION

In general, the coefficients of the LNA and NLNA term
in a chiral expansion of baryon masses are very large.
instance, the LNA term for the nucleon mass isdmN

(LNA) 5

25.6mp
3 ~with mp and dmN

(LNA) in GeV!. With mp

50.5 GeV, quite a low mass for current simulations, th
yields dmN

(LNA) 50.7 GeV—a huge contribution. Furthe
more, in this region hadron masses in both full and quenc
lattice QCD are found to be essentially linear inmp

2 or
equivalently quark mass, whereasdmN

(LNA) is highly nonlin-
ear. The challenge is therefore to ensure the appropriate L
and NLNA behavior,with the correct coefficients, as mp

→0, while making the transition to linear behavior asmp

increases, sufficiently rapidly to describe the actual latt
data.

A reliable method for achieving all this was proposed
Leinweberet al. @8#. They fit the full ~unquenched! lattice
data with the form

MB5aB1bBmp
2 1SB~mp ,L!, ~1!

where SB is the total contribution from those pion loop
which give rise to the LNA and NLNA terms in the sel
energy of the baryon. For theN these correspond to the pro
cessesN→Np→N and N→Dp→N, while for the D we
needD→Dp→D andD→Np→D. Explicitly,

SN5sNN
p 1sND

p ,

SD5sDD
p 1sDN

p . ~2!

In the heavy baryon limit, these four contributions (B
→B8p→B) can be summarized as

sBB8
p

52
3

16p2f p
2

GBB8E
0

`

dk
k4u2~k!

v~k!@vBB81v~k!#
, ~3!

wherev(k)5Ak21mp
2 is the intermediate pion energy an

vBB85(MB82MB) is the physical baryon mass splitting an
f p593 MeV. The coefficientsGBB8 are standard SU~6! cou-
plings and are summarized in Sec. IV. The ultraviolet re
lator, u(k), has a very natural physical interpretation as
Fourier transform of the source of the pion field. The LN
and NLNA structure of these diagrams is associated with
infrared behavior of the corresponding integrals and henc
independent of the choice of regularization scheme. The
of such a regulator effectively suppresses the self-ener
like L2/mp

2 for mp@L, the characteristic mass scale of t
cutoff. A common choice of regulator, which we us
throughout this work, is the dipole form,u(k)5L4/(L2

1k2)2.
In terms of the underlying effective field theory, the sha

of the regulator is irrelevant to the formulation ofxPT @9#.
However, current lattice simulation results encourage us
look for an efficient formulation which maximizes the app
cable pion-mass range accessed via one- or two-loop o
An optimal regulator~motivated by phenomenology! will ef-
fectively re-sum the chiral expansion encapsulating the ph
09450
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ics in the first few terms of the expansion. The approach
systematically improved by simply going to higher order
the chiral expansion. Our experience with dipole and mo
pole vertex regulators indicates that the shape of the reg
tor has little effect on the extrapolated results, provided
tice QCD simulation results are used to constrain the opti
regulator parameter on an observable-by-observable b
@8,10#.

In a phenomenological sense, the linear term of Eq.~1!,
which dominates formp@L, encompasses the quark ma
dependence of the pion-cloud source—the baryon withou
pion dressing. This term also serves to account for loop d
grams involving heavier mesons~integrated out of the effec
tive field theory!, which have much slower variation with
quark mass. Given the current state of the art in lattice sim
lations, data in the low to intermediate mass range are un
to reliably constrain the optimal parameterL. There is con-
siderable phenomenological support for choosing a dip
regulator parameter somewhat smaller than found for
axial form factor of the nucleon, which is 1.0360.04 GeV
@27–29#. However, it is important to understand that the a
ticipated development of supercomputing resources
techniques are such thatL may be optimally constrained b
full QCD simulation data in the near future.

Fitting lattice results to Eq.~1! is straightforward. Upon
calculating the described self-energies for a given choice
L, the fitting procedure amounts to a simple linear fit inaB
andbB .

III. QUENCHED CHIRAL PERTURBATION THEORY

Standard chiral perturbation theory is a low energy eff
tive field theory built upon the symmetries of QCD@30,31#.
It amounts to an expansion of Green’s functions in powers
momenta and quark mass about the chiral limit (mq50). In
the case of baryon masses,xPT tells us the leading behavio
of the quark mass expansion. BecausexPT is an effective
field theory, the renormalization procedure must be p
formed order by order in perturbation theory. At higher a
higher order, more and more unknown parameters are in
duced. These unknowns only play a role in analytic terms
the expansion. The coefficients of the leading nonanal
terms are constrained by chiral symmetry@32#—they are in-
dependent of regularization and the order of the chiral
pansion. In connecting the results of lattice QCD to t
physical world it is essential that one incorporate the corr
nonanalytic structure of the low energy theory.

QuenchedxPT (QxPT) provides the analogous low en
ergy effective theory for QQCD@21–23#. Sea quark loops
are removed from QCD by including a set of degenera
commuting~bosonic! quark fields. These bosonic fields hav
the effect of exactly cancelling the fermion determinant
the functional integration over the quark fields. This gives
Lagrangian for a field theory which is equivalent to th
quenched approximation simulated on the lattice. The l
energy effective theory is then constructed on the basis of
symmetries of this Lagrangian.

The leading chiral expansion of baryon masses in
quenched approximation has been calculated by Labrenz
7-2
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CHIRAL ANALYSIS OF QUENCHED BARYON MASSES PHYSICAL REVIEW D66, 094507 ~2002!
Sharpe@23#. For the reasons already mentioned in the Int
duction, it differs from the corresponding expansion in f
QCD. In particular, the chiral expansion coefficients take d
ferent values and new, nonanalytic behavior is also in
duced. The explicit form can be expressed as

MB5MB
(0)1c1

Bmp1c2
Bmp

2 1c3
Bmp

3

1c4
Bmp

4 1c4L
B mp

4 logmp1 . . . ~4!

with the coefficients of the terms which are nonanalytic
the quark mass listed in Table I. We note that in Ref.@23# the
N andD were treated as degenerate states in the chiral li
Experience in other situations suggests that it is more a
rate to retain a finite mass difference, in which case o
diagonal terms such asN→Dp→N lead to the nonanalytic
behavior of the formmp

4 logmp .
The contribution linear inmp is unique to the quenche

approximation. The quenched theory therefore exhibit
more singular behavior in the chiral limit. The origin of th
behavior is the Goldstone nature of theh8 in QQCD and
specifically the process shown in Fig. 1~b!. We note also that
the coefficients of the chiral expansion involve new co
plings, g and g8, which are related to the flavor-single
hairpin-baryon couplings forN and D respectively, illus-
trated in Fig. 1~a!. In the formalism of Ref.@23# these are
related to the couplings of full QCD via the relations

g5D2F, g850, ~5!

TABLE I. Coefficients of the lowest order nonanalytic terms
the chiral expansions of theN andD masses, with values from bot
full and quenched QCD listed for comparison (n21516p f p

2 , DM
5MD2MN).

B ci QCD QQCD

c1 0 2
1
2 (3F2D)2m0

2n
N c3 2

3
2 (F1D)2n $ 4

3 (D223DF)22(3F2D)g%n
c4L 3

p
~F1D!2

32

25

3

8DM
n

C 2

2pDM
n

c1 0 2
5

18H 2m0
2n

D c3 2
3
2 (F1D)2n $2 10

27H 22
10
9 Hg8%n

c4L
2

3

p
~F1D!2

8

25

3

8DM
n

C 2

2pDM

4

25
n

FIG. 1. Quark flow diagrams for the chiralh8 loop contributions
appearing in QQCD:~a! single hairpin,~b! double hairpin.
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as described in Appendix B. There is some uncertainty o
the flavor singlet couplings, especially in connection w
Okubo-Zweig-Iizuka ~OZI! violation associated with the
U~1! axial anomaly@33#. While this may modify our calcu-
lated curves at extremely light quark mass, it would have
significant effect on the fit to lattice data at large quark m
nor on the comparison of current quenched and full QC
data.

IV. QUENCHED SELF-ENERGIES

Our aim is to apply a similar procedure for the chir
extrapolation of quenched QCD data to that which h
proven successful for the physical theory. That is, we wish
generalize Eq.~1! to replace the LNA and NLNA self-energ
terms arising in full QCD by their quenched analogues. T
pion loop contributions have the same kinematic structure
those in full QCD. A simple redefinition of the coupling
GBB8 , in the expressions for the self-energies ensures
the correct LNA and NLNA of QxPT is maintained. Thus
the analytic expressions for the pion cloud corrections to
masses of theN andD are of the same form as the full QCD
integrals@c.f. Eq. ~3!#:

s̃BB8
p

52
3

16p2f p
2
G̃BB8E

0

`

dk
k4u2~k!

v~k!@vBB81v~k!#
, ~6!

where the quenched couplings,G̃BB8 , are listed in Table II,
together with their physical counterparts. Assuming a we
Nf dependence of the chiral parameters, we describe
quenched self-energies using the same tree level value
D50.76 andF50.50 as in full QCD.

Within the quenched approximationh8 loops also con-
tribute to the low energy effective theory, whereas they
usually neglected in the physical case. This is because a
summation of internal loop diagrams~coming from the fer-
mion determinant! means that theh8 remains massive in the
chiral limit of full QCD. On the other hand, the absence
these virtual loops in the quenched approximation causes
flavor singleth8 to behave as a Goldstone boson@21,22#. As
a consequence of this feature of the quenched theory, t
are two new types of loop contributions to be considered
schematic view of these processes is shown in Fig. 1.

The first of these two contributions, shown in Fig. 1~a!,
arises from a single ‘‘hairpin’’ interaction. As discusse
above, it is responsible for the term proportional tog (g8) in
the chiral expansion of theN (D) mass. These couplings ar
discussed in considerable detail in Appendix B. The struct

TABLE II. Chiral couplings appearing in the self-energy int
grals, Eq.~3! for full QCD and Eq.~6! for QQCD. In numerical
calculations we have used the couplings arising fromSU(6) rela-
tions @34#, C522D andH523D.

GNN GND GDD GDN

QCD (F1D)2 32
25(F1D)2 (F1D)2 8

25(F1D)2

QQCD 8
9 (3DF2D2) 16

9 D2 20
9 D2 2

8
9 D2
7-3
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of this diagram is exactly the same as the pion loop con
bution where the internal baryon is degenerate with the
ternal state. The integral representing this diagram is then
same as that fors̃BB

p ,

s̃B
h8(1)52

3

16p2f p
2

NB
(1)E

0

`

dk
k4u2~k!

v2~k!
. ~7!

The factorsNB
(1) , providing the correct nonanalytic behavio

in the chiral expansion@Eq. ~4!#, are displayed in Table III.
The second of these newh8 loop diagrams arises from th

double hairpin vertex, pictured in Fig. 1~b!. This contribution
is particularly interesting because there are two meson pr
gators and it is therefore responsible for the nonanalytic t
linear in mp—this term being unique to the quenched ca
The integral corresponding to this self energy can be writ
in a similar way:

s̃B
h8(2)5

3

16p2f p
2

NB
(2)E

0

`

dk
k4u2~k!

v4~k!
. ~8!

Note the sign change and the higher power ofv in the de-
nominator. The coefficients,NB

(2) , providing the correct
nonanalytic behavior in Eq.~4!—in this case the coefficien
of mp—are given in Table III. The sum of these four cont
butions then gives the net meson-loop induced self-ener
within the quenched approximation,

S̃B5s̃BB
p 1s̃BB8

p
1s̃B

h8(1)1s̃B
h8(2) . ~9!

The individual contributions to theN andD masses over a
range of pion mass are plotted in Figs. 2 and 3. These ar
evaluated with the dipole regulator mass parameterL
50.8 GeV. The corresponding self-energies from full QC
are also shown for comparison. We note that in QQCD
contributions are typically quite a bit smaller and the doub

hairpin graph,s̃B
h8(2) , is repulsive. The differences are e

hanced for theD where s̃DN
p is also repulsive. We observ

that the rapid, nonlinear behavior~which is effectively much
larger in full QCD! is restricted to the regionmp

2

&0.2 GeV2, above which the self-energies are qu
smoothly varying functions of the quark mass.

V. FITTING PROCEDURE

The lattice data considered in this analysis come from
recent paper of Bernardet al. @4#. These simulations were

TABLE III. Couplings used in flavor singleth8 self-energies.
We takem0

250.42 GeV2, lying between phenomenological and la
tice estimates@35–37#. The momentum dependence of the doub
hairpin vertex, which is believed to be small, is neglected.

NB
(1) NB

(2) (GeV2)

N 4
3 (3F2D)g 2

9 (3F2D)2m0
2

D 20
27Hg8 10

81H 2m0
2
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performed using an improved Kogut-Susskind quark acti
which is known to have good scaling properties@38#. Unlike
the standard Wilson fermion action, masses determine
finite lattice spacing are excellent estimates of the continu
limit results.

We are particularly concerned with the chiral extrapo
tion of baryon masses and how their behavior is affected
the quenched approximation. In such a study, it is essen
that the method of scale determination be free from ch
contamination. One such method involves the static-qu
potential. As low-lying pseudoscalar mesons made of li
quarks exhibit negligible coupling to hadrons containi
only heavy valence quarks, the low energy effective fie
theory plays no role in the determination of the scale
these systems. In fixing the scale through such a proce
one constrains all simulations, quenched, 2-flavor, 3-fla

FIG. 2. Various self-energy contributions toMN for dipole mass,
L50.8 GeV. From top down atmp

2 50.1 GeV2, the curves corre-
spond to~where a; over the symbol denotes a quenched QC

contribution! s̃N
h8(2),s̃N

h8(1),s̃NN
p ,s̃ND

p , total quenchedS̃N , sND
p ,

sNN
p and total physicalSN .

FIG. 3. Various self-energy contributions toMD for dipole mass,
L50.8 GeV. From top down atmp

2 50.1 GeV2, the curves corre-
spond to~where a; over the symbol denotes a quenched QC

contribution! s̃DN
p ,s̃D

h8(2) , total quenchedS̃D , sDN
p , s̃DD

p , sDD
p and

total physicalSD .
7-4
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CHIRAL ANALYSIS OF QUENCHED BARYON MASSES PHYSICAL REVIEW D66, 094507 ~2002!
etc., to match phenomenological static-quark forces. Eff
tively, the short range (0.35–0.5 fm) interactions a
matched across all simulations.

A commonly adopted method involving the static-qua
potential is the Sommer scale@39,40#. This procedure define
the force,F(r ), between heavy quarks at a particular leng
scale, namelyr 0.0.5 fm. Choosing a narrow window t
study the potential avoids complications arising in dynami
simulations where screening and ultimately string breakin
encountered at large separations. The lattice data analyz
this report use a variant of this definition, choosing to defi
the force atr 150.35 fm viar 1

2F(r 1)51.00 @4#.
As we remarked earlier, the nonanalytic chiral behavio

governed by the infrared regions of the self-energy integr
The fact that the lattice calculations are performed on a fi
volume grid means that the self-energy integrals implicit
current lattice simulations do not include the exact ch
behavior. It is important to take this into account in the fitti
procedure and we therefore follow Ref.@10# in replacing the
continuum self-energy integrals used in the fitting process
a discrete sum over the meson momenta available on
lattice:

4pE
0

`

k2dk5E d3k'
1

V S 2p

a D 3

(
kx ,ky ,kz

. ~10!

The self-energy integrals calculated in this way are w
should be directly compared with the lattice data, and
illustrate these by open squares in subsequent figures. U
obtaining the optimal fit parameters, one can evaluate
integrals exactly and therefore obtain the infinite-volum
continuum limit. The latter is the result which should b
compared with experiment at the physical pion mass.

We now proceed to fit quenched lattice data with the fo

M̃B5ãB1b̃Bmp
2 1S̃B~mp ,L! ~11!

@by analogy with the form used in full QCD, Eq.~1!#, with
the self-energies evaluated, as we have just outlined, u
the momentum grid corresponding to the specific latt
simulation. Phenomenologically speaking, the linear term
Eq. ~11! may be thought of as accounting for the quark m
dependence of the pion-cloud source. This form then a
matically includes the expected heavy quark behavior wh
the p andh8 loop contributions are suppressed.

The effective field theory regulator, motivated by th
physical structure of the meson-baryon vertex, character
the finite size of the pion source. Quenched simulations
hadronic charge radii performed at moderate to heavy qu
masses@41# have been demonstrated to be consistent w
experiment once the meson-cloud properties of full QCD
taken into account@16,42#. This indicates that the size of th
meson-cloud source is expected to be of similar size in b
quenched and physical QCD. For this reason we procee
fit both quenched and physical data with a common value
L. For a fixed choice ofL, fitting to lattice data amounts to
a linear fit ina andb. It turns out that, for a range of value
of L, the values ofa and b found for the QQCD data are
surprisingly close to the values found for the fit to dynami
09450
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QCD data. This strongly suggests that the self-energies
cluded here, which contain the LNA and NLNA behavi
appropriate to each type of simulation, contain the prim
effect of quenching. To illustrate the point, Fig. 4 shows
measure,d, of the difference between the quenched and
namical data sets over the range ofmp considered. This mea
sure is proportional to the net area contained between
straight lines obtained from the fits and has been normali
to the case where the self-energy diagrams are totally
glected. The improved agreement between data sets ove
range of dipole masses highlights the effectiveness of
self-energy correction. It is also worth noting that th
x2/d.o.f. is also improved by incorporating the self-energ
into the fit. For the preferred dipole mass,L50.8 GeV, this
is better by a factor 2. Results of both the physical a
quenched fits are shown together in Fig. 5. The paramete
the best fits are displayed in Table IV. Here we see the
markable agreement of the linear term of our fitting form
las, Eqs.~1! and~11!. This strongly suggests that the beha
ior of the meson-cloud source is very similar in quench
and full QCD. The primary difference between the quench
and physical results can then be described by the meson-
induced self-energies.

This observation suggests that it may well be possible
make a connection between quenched simulations and
ron properties in the real world. One would fit quenched d
with appropriate self-energies to obtain the linear behavio
the meson-cloud source. Then the quenched self-ene
would be replaced by their full-QCD counterparts, hence
taining more physical results. It is clearly very important
test this result further on other hadrons~e.g. for other mem-
bers of the octet! and against dynamical simulations at low
quark masses.

VI. D-N HYPERFINE SPLITTING

The analysis of lattice data has demonstrated the abilit
describe the primary difference between quenched and

FIG. 4. The valued is a measure of the difference between t
quenched and dynamical data sets after accounting for the rele
self-energy diagrams. This measure is proportional to the net
contained between the straight lines obtained from the fits and
been normalized to the case where the self-energy diagrams
totally neglected.
7-5



lf
rg
l
ea
be
fe
s
CD
es

ho
a
ly
V
is

n

he
a

in
ge
tive
ure,
ce-
he
nd
y-
e
to

that
Eqs.
ry
p-
s

the
e
the
avy

imal
axial
re
ink.
ent
ew
re-

tes
es

oud
ur-
as

ap-
ral
as
ing
ery

fo
on

a

ta
nd
ee

)
)

)

ole

YOUNG et al. PHYSICAL REVIEW D 66, 094507 ~2002!
namical simulations in terms of the meson-loop se
energies. Figure 6 shows the difference in the self-ene
terms for theN andD in quenched and full QCD, for severa
values of the common dipole-regulator mass. It is quite cl
that there is a difference of between 150 and 250 MeV
tween the quenched and full QCD cases. Since this dif
ence was essential in accounting for the clear difference
the behavior of the baryon masses in QQCD and full Q
shown in Fig. 5, we have some confidence in using th
results to say how much of the physicalN-D mass splitting is
associated with pion loops and how much comes from s
range processes, such as gluon exchange. In fact, an ex
nation of Fig. 6 for the case of full QCD suggests fair
clearly that only about 50 MeV of the observed 300 Me
N-D splitting arises from pion loops. Of course, this result
more dependent on the assumption of thesamedipole mass
parameter at every vertex than the fits to theN andD masses
individually. Nevertheless, it seems unlikely that more tha
third of the total splitting could come from this source.

VII. CONCLUSIONS

We have investigated the quark mass dependence of tN
andD masses within the quenched approximation. The le

FIG. 5. Fit ~open squares! to lattice data@4# ~quenchedn, dy-
namical m) with adjusted self-energy expressions accounting
finite volume and lattice spacing artifacts. The infinite-volume, c
tinuum limit of quenched~dashed lines! and dynamical~solid lines!
are shown. The lower curves and data points are for the nucleon
the upper ones for theD.

TABLE IV. Best fit parameters for both full and quenched da
sets with dipole regulator,L50.8 GeV. The second set correspo
to a simple linear fit, where the self-energy contributions have b
neglected. All masses are in GeV.

Self-energy Simulation aN bN aD bD

Dipole Physical 1.27(2) 0.90(5) 1.45(3) 0.74(8
Quenched 1.24(2) 0.85(6) 1.45(4) 0.72(11

Nil Physical 1.04(2) 1.07(5) 1.28(3) 0.88(8)
Quenched 1.14(2) 0.92(6) 1.44(4) 0.69(11
09450
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mi-
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d-

ing chiral behavior of hadron masses is known to differ
quenched QCD from the physical theory. This knowled
has been used to guide us in the construction of an effec
field theory which encompasses the correct chiral struct
and is consistent with current lattice simulations. This pro
dure of fitting lattice data with a linear term together with t
meson-loop corrections which give rise to the LNA a
NLNA behavior has been demonstrated previously to fit d
namical QCD simulation results remarkably well. Here w
have shown that the application of the same procedure
quenched results is able to consistently fit the data in
case as well. We note that this approach encapsulated in
~1! and ~11! is a finite-range regulated effective field theo
consistent with the traditional dimensional regularization a
proach toxPT. By calculating next-order loop contribution
it is systematically improvable and model independent@9#.

Remarkably, a comparison of the two fits suggests that
properties of theN andD, stripped of their pion clouds, ar
essentially the same in quenched and full QCD, once
scale is set using the Sommer scale appropriate to he
quark systems. This observation is dependent on an opt
regulator shape and size, and the assumption that the
coefficients are similar in quenched and full QCD. Therefo
this result should be regarded as a phenomenological l
The extent to which this observation is model independ
requires the investigation of alternative regulators and n
accurate lattice results approaching the light quark-mass
gime. At present, the success of this result further motiva
use of the phenomenologically preferred dipole, which giv
a most accurate description of the shape of the pion-cl
source. It is clearly essential to test this finding against f
ther full QCD simulations at lighter quark masses as well
for other hadrons.

We have demonstrated that although the quenched
proximation gives rise to more singular behavior in the chi
limit, this is not likely to be observed in lattice simulations
these contributions are quickly suppressed with increas
quark mass. Indeed our results suggest that it will be v

r
-

nd

n

FIG. 6. Meson-loop contribution to theD-N mass splitting in
both quenched and full QCD—for several values of the dip
mass.
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CHIRAL ANALYSIS OF QUENCHED BARYON MASSES PHYSICAL REVIEW D66, 094507 ~2002!
hard to detect any significant chiral curvature in the case
the nucleon, while for theD there may be some small, up
ward curvature. TheD-N mass splitting increases to aroun
400 MeV at the physical point in QQCD. As a consequen
of this behavior, theD mass in the quenched approximatio
is expected to differ from the physical mass by appro
mately 25%. Finally, we have shown that while a fraction
the physicalN-D mass difference can be attributed to a d
ference in pion self-energy loops, this is unlikely to amou
to more than a third of the observed splitting.
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APPENDIX A: ANALYTIC INTEGRATION

Here we summarize analytic expressions for the s
energy integrals. It should be noted that these expression
not used in fitting lattice data. For the purpose of fitting, t
continuum integral is replaced by a discrete sum over
available momenta on the corresponding lattice, as descr
in Eq. ~10!.

Firstly we consider the case of the simple meson-lo
digram where the internal baryon line has degenerate m
with the external state:

s52
3

16p2f p
2

GE
0

`

dk
k4u2~k!

v2~k!
. ~A1!

Using a sharp cutoff,u(k)5u(L2k), the integral can be
expressed as

s52
3G

16p2f p
2 Fmp

3 arctanS L

mp
D1

L3

3
2Lmp

2 G . ~A2!

The LNA behavior of this can then be immediately read fro
this,

suLNA52
3G

32p f p
2

mp
3 . ~A3!

Alternatively, our preferred dipoleu(k)5L4/(L21k2)2,
also provides an analytic expression for this self-energy,

s52
3G

512p f p
2

L5

~L1mp!4
~mp

2 14Lmp1L2!. ~A4!

This gives precisely the same LNA behavior as the sh
cutoff, as expected because the nonanalytic behavior is
to the infrared behavior of the integral. It is associated w
the residue of the pion propagator pole, and hence inde
dent of an ultraviolet cutoff.
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The case of the double meson propagator can also
performed analytically,

s5
3

16p2f p
2

NE
0

`

dk
k4u2~k!

v4~k!
. ~A5!

For u(k)5u(L2k),

s5
3

16p2f p
2

3N

3mp
2 L12L323mp~mp

2 1L2!arctanS L

mp
D

2~mp
2 1L2!

.

~A6!

For u(k)5L4/(L21k2)2,

s5
3N

512p f p
2

L5~mp15L!

~L1mp!5
. ~A7!

Once again both integrals give the same LNA behavior,

suLNA52
9N

64p f p
2

mp . ~A8!

For the off-diagonal contributions, where the intern
baryon is not degenerate with the external state,

s52
3

16p2f p
2

GE
0

`

dk
k4u2~k!

v~k!@vBB81v~k!#
, ~A9!

with vBB8 finite. The results do not have a simple form. T
full expression for the case of a sharp cutoff form factor c
be found in Ref.@8#. We show the LNA contribution to this
diagram for reference,

suLNA52
9G

128p2f p
2

mp
4

vBB8

logmp . ~A10!

APPENDIX B: FLAVOR SINGLET IN FULL AND
QUENCHED QCD

This appendix serves to clarify the derivation of the ha
pin meson-baryon couplings in quenchedxPT.

The flavor singleth8 remains light in the quenched ap
proximation, and is therefore an effective degree of freed
in the low energy sector. Such excitations must therefore
incorporated into the low-energy analysis. Within full QCD
resummation of internal loop diagrams renders theh8 mas-
sive and hence it plays no role in the low-energy dynam
For this reason couplings to such flavor singlet states
neglected. In our analysis, we wish to compare the lo
energy structure of the quenched and physical theories
this case, a flavor singlet coupling, likeNNh8, must be in-
cluded in the chiral Lagrangian of full QCD in order that it
7-7
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treated on equal footing with the quenched theory. This c
pling will not alter any results of the physical theory as a
diagram would involve the propagation of a heavyh8.

Here we derive best estimates for the flavor singlet c
plings in quenched QCD. This is achieved by comparison
the quenched and full chiral Lagrangians, under the stand
assumption that the couplings exhibit negligible change
tween the two theories@23#. We follow the notation of La-
brenz and Sharpe@23# in the analysis of such contributions
ec
i-
ef

is

ns

n-

o
e

m

09450
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-
f
rd
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All symbols retain the same meaning, unless otherw
specified.

The chiral Lagrangian for full QCD can be expressed

L5Lp1LBp1LTp . ~B1!

The standard octet and decuplet Lagrangians are given
an additional coupling to an SU~3! flavor singlet state. For
clarity we label the octet and singlet parts of the meson m
trix, A:
LBp5 i tr~B̄v•DB!12Dtr~B̄Sm$Am
oct ,B%!12Ftr~B̄Sm@Am

oct ,B# !12mbDtr~B̄$M 1,B%!12mbFtr~B̄@M 1,B# !

12mb0tr~B̄B!tr~M 1!12gstr~B̄SmB!tr~Am
sin!, ~B2!

LTp52 i T̄n~v•D!Tn1DMT̄nTn12HT̄nSmAm
octTn1C~ T̄nAn

octB1B̄An
octTn!1cT̄nM 1Tn2s̄T̄nTntr~M 1!

12gs8T̄
nSmTntr~Am

sin!. ~B3!
gh

n
s
ed
iral
es.
ack
or
al
ef.

on,
The new parameters,gs and gs8 , describe couplings of the
flavor singleth8 to baryon octet and decuplet states resp
tively. Within full QCD the single vertex has two topolog
cally different quark flow diagrams as illustrated by the l
and right-hand vertices of Fig. 1~a!. The left is that of aqq̄
insertion on one of the valence quark lines and the right
pure gluonic coupling through a hairpin-styleqq̄ annihila-
tion. The total coupling is a sum of these two contributio
Denoting the hairpin vertex coupling bygQCD andgQCD8 for
octet and decuplet baryons respectively we have

gs5
1

A6
gh8NN1gQCD, ~B4!

gs85
1

A6
gh8DD1gQCD8 . ~B5!

The first of these interactions,gh8NN (gh8DD) is related to the
axial couplings by SU~6! phenomenology. We take the sta
dard approach and assign

gh8NN5A2ghNN5A2

3
~3F2D !, ~B6!

gh8DD5A2ghDD5A2

3
H. ~B7!

The effective chiral Lagrangian of quenched QCD is@23#

L (Q)5L F
(Q)1LBF

(Q)1LTF
(Q) , ~B8!

where meson and baryon states are now understood t
constructed of ordinary quarks and bosonic quarks. The g
eral Lagrangian for the heavy fields can be written in ter
of the rank-3 tensor fields as defined in Ref.@23#, B andT,
-

t

a

.

be
n-
s

LBF
(Q)5 i ~B̄v•DB!12a~B̄SmBAm!12b~B̄SmAmB!

12gs~B̄SmB!str~Am!1aM~B̄BM 1!1bM~B̄M 1B!

1s~B̄B!str~M 1!, ~B9!

LTF
(Q)52 i ~ T̄n~v•D!Tn!1DM ~ T̄nTn!12H~ T̄nSmAmTn!

2A3

2
C@ T̄nAnB1B̄AnT n#12gs8~ T̄nSmTn!str~Am!

1cT̄nM 1Tn2s̄~ T̄nTn!tr~M 1!. ~B10!

It should be noted that the termsgs and gs8 describe both
types of flavor-singlet coupling, not just that arising throu
the hairpin alone. Similarly to Eq.~B5!, in the quenched
theory these can be described by

gs5
1

A6
gh8NN1g, ~B11!

gs85
1

A6
gh8DD1g8, ~B12!

where the termsg andg8 now correspond to the pure hairpi
couplings as used in Ref.@23#. Here we also note the term
gh8NN and gh8DD are unchanged in going to the quench
theory; this is consistent with the assumption that the ch
parametersF andD are unchanged between the two theori

One can then relate the quenched chiral Lagrangian b
to that of full QCD by restricting the indices on the tens
fields, B and T, to those corresponding to the physic
quarks. The details of this procedure are described in R
@23#. Performing these restrictions on the octet-bary
quenched chiral Lagrangian@Eq. ~B9!# one finds
7-8
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LBF
(Q)uR5 i ~B̄v•DB!uR1

2

3
~2a2b!tr~B̄SmAmB!1

1

3
~2a24b!tr~B̄SmBAm!1

1

3
~a14b16gs!tr~B̄SmB!tr~Am!

1
1

3
~2aM2bM !tr~B̄M 1B!1

1

6
~2aM24bM !tr~B̄BM 1!1

1

6
~aM14bM16s!tr~B̄B!tr~M 1!. ~B13!
and

e

r

ZI

not
Equating this with Eq.~B2! gives

2

3
~2a2b!52D12F, ~B14!

1

3
~2a24b!52D22F, ~B15!

1

3
~a14b16gs!52gs , ~B16!

1

3
~2aM2bM !52mbD12mbF , ~B17!

1

6
~2aM24bM !52mbD22mbF , ~B18!

1

6
~aM14bM16s!52mb0 . ~B19!

In extracting the flavor-singlet part, Eq.~B16! provides us
with
ht,

.

ht,

B

y

09450
1

3
a1

4

3
b1A2

3
gh8NN12g5A2

3
gh8NN12gQCD,

~B20!

and combining with Eqs.~B14!, ~B15! one arrives at

g5gQCD1D2F. ~B21!

The restrictions are much simpler for the decuplet case
one finds

g85gQCD8 . ~B22!

In estimating the hairpin-type couplings in full QCD on
assumes that they are relatively small,gQCD!gh8NN , due to
OZI-type suppression@43#. With analogous arguments fo
the decuplet, we takegQCD5gQCD8 50. We do note that the
U~1! axial anomaly may be effective in overcoming the O
rule in the case ofh8 couplings@33#, but as we mentioned in
the text the main conclusions of our present analysis are
very sensitive to the precise value of theh8-nucleon cou-
pling.
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