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Chiral analysis of quenched baryon masses
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We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and
the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise
to the leading and next-to-leading nonanalytic behat@md hence the most rapid variation in the region of
light quark masg we find surprisingly little curvature in the quenched case. Replacing these meson-loop
self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results
of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass
splitting between these baryons.
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I. INTRODUCTION by a mass scald, related to the inverse of the size of the
pion cloud source.
The quenched approximation is a widely used tool for ~This approach is equivalent to the formulation of chiral
studying nonperturbative QCD within numerical simulationsPerturbation theory XPT) using a finite-range regulator with

of lattice gauge theory. With an appropriate choice of thetXtent governed by\ [9]. The resummation of the chiral
%pansmn arising from the finite-range regulator suppresses

lattice scale and at moderate to heavy quark masses, t e rapid nonanalytic variation of hadron properties once the

app_ro>_<|mat|on has been shown to give on_Iy small, S.yStemat'éion Compton wavelength is smaller than this scéle.

dgwatmns from the results of full Q_CD with dynamical fer- _>A). The importance of incorporating such behavior has

mions. Although no formal connection has been establishegeen syccessfully demonstrated for a number of hadronic

between full and quenched QCD, the similarity of the resultsspservables, including mass@;10], the sigma commutator

has led to the belief that the effects of quenching are small11], magnetic momentgl2—15, charge radi{16] and par-

and hence that quenched QCD provides a reasonable atpn distribution functiong17-19.

proximation to the full theory1]. The impressive results found using these methods have
Improved lattice actions, together with advances in highed us to the present investigation of the problem of the

performance computing, have been responsible for significhiral extrapolation of baryon masses in quenched QCD. The

cant improvements in the calculation of baryon masses dthiral properties within the quenched approximation are
<nown to differ from those of full QCD in a number of very

moderate to light quark masses within the quenched approx|< X
mation [2-5]. Simulations with dynamical fermions have ;nteyestmg V\{ay$20—25. For example, not only are the ef-
e ective couplings at the pion-baryon vertices significantly al-

proven to be more difficult, but results have been reporteqered in quenched QCDQQCD) but, because the;’ be-
with pion masses as low as 320 Mg¥,6]. haves as a Goldstone boson in QQCD, one must also

The fact that one is restricted to quark masses much Iarg%ronsidern’ loops.
than the physical values means that, in addition to all the peare we first review previous worlg] which reported a
usual extrapolationge.g., to the infinite volume and con- s ccessful method for extrapolating baryon masses as calcu-
tinuum limits), if one wants to compare with empirical had- |ated in full QCD lattice simulations. The modified chiral
ron observables, one must also have a reliable method @ructure of quenched baryon masgﬁg] is presented next.
extrapolation to the chiral limit. Any such extrapolation must\We show how to construct the various meson loop induced
incorporate the appropriate chiral corrections, arising fromself-energies [26] in order to preserve the leading-
Goldstone boson loops, which give rise to rapid, nonlineanonanalytic and next-to-leading nonanalytic structure appro-
variations as the chiral limit is approached. priate to QQCD, while incorporating the established behav-

Studies of the exactly soluble Euler-Heisenberg problenior at heavier quark masses. This is followed by a detailed
[7], suggest that one can develop surprisingly accurate exapplication to the extrapolation of the quenchiddand A
trapolation functions, provided one builds in the correct be-masses to the chiral limit. Finally, we use the observed simi-
havior in both the small and large mass limits. For QCD, larity of the structure of baryons stripped of their Goldstone
Leinweberet al.[8] have suggested an extrapolation methodboson clouds, in full and quenched QCD, to explore whether
which ensures both the exact low mass limit of chiral pertur-one can make a connection between the masses calculated in
bation theory[technically its leading(LNA) and next-to- QQCD and those obtained in a dynamical simulation. The
leading nonanalyti€cNLNA) behaviot and the heavy quark remarkable agreement obtained suggests a number of further
limit of heavy quark effective theorfHQET). The transition tests and also leads us, with considerable confidence, to an
between the chiral and heavy quark regimes is characterizadterpretation of the origin of th&l-A mass splitting.
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Il. QCD EXTRAPOLATION ics in the first few terms of the expansion. The approach is
systematically improved by simply going to higher order in

in a chiral expansion of baryon masses are very large Fc;the chiral expansion. Qur_experience with dipole and mono-
: - (NA) ;5ole vertex regulators indicates that the shape of the regula-
mstancg:, the LNA term for th&/r:)uc!eon MassABy "= {or has little effect on the extrapolated results, provided lat-
—5.6m; (with m, and émy in GeV). With m.  tice QCD simulation results are used to constrain the optimal

=0.5 GeV,LNqAUite a low mass for current simulations, thisyegylator parameter on an observable-by-observable basis
yields sm{"¥=0.7 GeV—a huge contribution. Further- [g 1.

more, in this region hadron masses in both full and quenched |n a phenomenological sense, the linear term of @&j.
lattice QCD are found to be essentially linear i, or  which dominates fom,>A, encompasses the quark mass
equivalently quark mass, wheream{™ is highly nonlin-  dependence of the pion-cloud source—the baryon without its
ear. The challenge is therefore to ensure the appropriate LNpion dressing. This term also serves to account for loop dia-
and NLNA behavior,with the correct coefficientsas m,;  grams involving heavier mesofiistegrated out of the effec-
—0, while making the transition to linear behavior ms.  tive field theory, which have much slower variation with
increases, sufficiently rapidly to describe the actual latticequark mass. Given the current state of the art in lattice simu-
data. lations, data in the low to intermediate mass range are unable
A reliable method for achieving all this was proposed byto reliably constrain the optimal paramet&r There is con-
Leinweberet al. [8]. They fit the full (unquenchedlattice  siderable phenomenological support for choosing a dipole

In general, the coefficients of the LNA and NLNA terms

data with the form regulator parameter somewhat smaller than found for the
5 axial form factor of the nucleon, which is 1.63.04 GeV
Mg=ap+ Bsmy+Zg(m,,A), (1) [27-29. However, it is important to understand that the an-

ticipated development of supercomputing resources and

where 2 is the total contribution from those pion 100PS (o chniques are such thAt may be optimally constrained by
which give rise to the LNA and NLNA terms in the self- full QCD simulation data in the near future.

energy of the baryon. For tié these correspond to the pro-  Fiing |attice results to Eq(l) is straightforward. Upon
cesseN—N7—N andN—A7—N, while for theA we .5 cylating the described self-energies for a given choice of

needA—A7—A andA—N7z—A. Explicitly, A, the fitting procedure amounts to a simple linear fitig
T T and .
IN= ot oA Fa
Sa=ol ol ?) lll. QUENCHED CHIRAL PERTURBATION THEORY

Standard chiral perturbation theory is a low energy effec-
tive field theory built upon the symmetries of QGB0,31].
It amounts to an expansion of Green’s functions in powers of

In the heavy baryon limit, these four contribution8 (
—B’'7—B) can be summarized as

3 - K*u2(k) momenta and quark mass about the chiral limit,&0). In
O =" ﬁGBB,f dk , (3) the case of baryon massed>T tells us the leading behavior
167717 0 w(k[wgs + k)] of the quark mass expansion. BecaydeT is an effective

field theory, the renormalization procedure must be per-

wherew(k) = Vk?+m? is the intermediate pion energy and formed order by order in perturbation theory. At higher and
wpg' = (Mg —Mg) is the physical baryon mass splitting and higher order, more and more unknown parameters are intro-
f.=93 MeV. The coefficient&gg: are standard S@8) cou-  duced. These unknowns only play a role in analytic terms of
plings and are summarized in Sec. IV. The ultraviolet reguthe expansion. The coefficients of the leading nonanalytic
lator, u(k), has a very natural physical interpretation as theterms are constrained by chiral symmeitB2]—they are in-
Fourier transform of the source of the pion field. The LNA dependent of regularization and the order of the chiral ex-
and NLNA structure of these diagrams is associated with th@ansion. In connecting the results of lattice QCD to the
infrared behavior of the corresponding integrals and hence ighysical world it is essential that one incorporate the correct
independent of the choice of regularization scheme. The usgonanalytic structure of the low energy theory.
of such a regulator effectively suppresses the self-energies QuenchedyPT (QyPT) provides the analogous low en-
like A2/m2 for m,> A, the characteristic mass scale of theergy effective theory for QQCD21-23. Sea quark loops
cutoff. A common choice of regulator, which we use are removed from QCD by including a set of degenerate,
throughout this work, is the dipole formy(k)=A%(A?  commuting(bosoni¢ quark fields. These bosonic fields have
+k?)2, the effect of exactly cancelling the fermion determinant in

In terms of the underlying effective field theory, the shapethe functional integration over the quark fields. This gives a
of the regulator is irrelevant to the formulation @PT [9]. Lagrangian for a field theory which is equivalent to the
However, current lattice simulation results encourage us tguenched approximation simulated on the lattice. The low
look for an efficient formulation which maximizes the appli- energy effective theory is then constructed on the basis of the
cable pion-mass range accessed via one- or two-loop ordegymmetries of this Lagrangian.
An optimal regulatofmotivated by phenomenologwill ef- The leading chiral expansion of baryon masses in the
fectively re-sum the chiral expansion encapsulating the physguenched approximation has been calculated by Labrenz and
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TABLE |. Coefficients of the lowest order nonanalytic terms in ~ TABLE Il. Chiral couplings appearing in the self-energy inte-
the chiral expansions of tHé andA masses, with values from both grals, Eq.(3) for full QCD and Eg.(6) for QQCD. In numerical
full and quenched QCD listed for comparison’(1:16wffT, AM calculations we have used the couplings arising fi®b}(6) rela-

=M,—My). tions[34], C=—-2D andH=—3D.
B ¢ QCD QQCD Gnn Gna Gaa Gan
c 0 —3(3F—D)?m3v QCD (F+D)>  3%(F+D)? (F+D)* Z(F+D)?
N ¢ -3(F+D)’»  [4(D2-3DF)-2(3F-D)y}» QQCD §(3DF-D?)  ¥D? $D? -§D?
Cq 3(F+D)2 32 c?
— iy 4 earere 4
& 258AM 2mAM as described in Appendix B. There is some uncertainty over
s the flavor singlet couplings, especially in connection with
C1 , 0 —1gH Mgy Okubo-Zweig-lizuka (OZI) violation associated with the
A ¢ —3(F+D)%v {(—8H>—BHy'}v U(1) axial anomaly{33]. While this may modify our calcu-
Cia 3 8 3 c? 4 lated curves at extremely light quark mass, it would have no
2 _ . g . .

(F+D) 258AM ¥ 57AM 25" significant effect on_the fit to lattice data at large quark mass
nor on the comparison of current quenched and full QCD
data.

Sharpg[23]. For the reasons already mentioned in the Intro- IV. QUENCHED SELF-ENERGIES

duction, it differs from the corresponding expansion in full

QCD. In particular, the chiral expansion coefficients take dif- Our aim is to apply a similar procedure for the chiral
ferent values and new, nonanalytic behavior is also introextrapolation of quenched QCD data to that which has
duced. The explicit form can be expressed as proven successful for the physical theory. That is, we wish to
generalize Eq(1) to replace the LNA and NLNA self-energy
terms arising in full QCD by their quenched analogues. The
pion loop contributions have the same kinematic structure as
+cBm?+c8 milogm,+ ... (4)  those in full QCD. A simple redefinition of the couplings,
Ggp', in the expressions for the self-energies ensures that
. - . .. the correct LNA and NLNA of QPT is maintained. Thus,
with the coefficients of the terms which are nonanalytic MNihe analytic expressions for the pion cloud corrections to the

the quark mass listed in Table I. We note that in R28] the masses of thel andA are of the same form as the full QCD
N andA were treated as degenerate states in the chiral "m“integrals[cf Eq.(3)]:

Experience in other situations suggests that it is more accu-
rate to retain a finite mass difference, in which case off—

Mg=MP+cm_ +cBm2 +cSm?

o 4.2

diagonal terms such @8—A7—N lead to the nonanalytic o= _@BB,f KT ,
behavior of the formm?logm,,. B8 1672f2 0 o(K)|[wgg +ok)]

The contribution linear irm,, is unique to the quenched
approximation. The quenched theory therefore exhibits gyhere the quenched couplingSgg , are listed in Table I,
more Singular behavior in the chiral limit. The Origin of this together with their physica| Counterparts_ Assuming a weak
behavior is the Goldstone nature of the in QQCD and N, dependence of the chiral parameters, we describe the
specifically the process shown in Figbl We note also that quenched self-energies using the same tree level values of
the coefficients of the chiral expansion involve new cou-p=0.76 andF=0.50 as in full QCD.
plings, y and ', which are related to the flavor-singlet,  \wjithin the quenched approximation’ loops also con-
hairpin-baryon couplings foN and A respectively, illus-  tripute to the low energy effective theory, whereas they are
trated in Fig. 1a). In the formalism of Ref[23] these are  ysually neglected in the physical case. This is because a re-

(6)

related to the couplings of full QCD via the relations summation of internal loop diagranisoming from the fer-
mion determinantmeans that they’ remains massive in the
y=D-F, y' =0, (5) chiral limit of full QCD. On the other hand, the absence of

these virtual loops in the quenched approximation causes the
flavor singletn’ to behave as a Goldstone bog@d,22. As
a consequence of this feature of the quenched theory, there
are two new types of loop contributions to be considered. A
schematic view of these processes is shown in Fig. 1.
The first of these two contributions, shown in Figa)l
@ ®) arises from a single “hairpin” interaction. As discussed
above, it is responsible for the term proportionaht¢y’) in

FIG. 1. Quark flow diagrams for the chira! loop contributions  the chiral expansion of thd (A) mass. These couplings are
appearing in QQCD(a) single hairpin,(b) double hairpin. discussed in considerable detail in Appendix B. The structure
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TABLE llI. Couplings used in flavor singley’ self-energies. T T T T T
We takem§=0.42 GeV, lying between phenomenological and lat- 00 F " T -
tice estimate$35—-37. The momentum dependence of the double
hairpin vertex, which is believed to be small, is neglected.

N N& (GeV?) %\

&)

N 2(3F-D)y §(3F—D)%m3 =
A SHy' 2 H 2m3 °

of this diagram is exactly the same as the pion loop contri-
bution where the internal baryon is degenerate with the ex-

ternal state. The integral representing this diagram is then the 00 01 02 03 04 05 06
same as that for g, m? (GeV?)
_, w k4u2(k) FIG. 2. Various self-energy contributionstby for dipole mass,
ol W=— - N(Bl)f 5 ) (7)  A=0.8 GeV. From top down an?=0.1 Ge\?, the curves corre-
1677 0 (k) spond to(where a~ over the symbol denotes a quenched QCD

contribution o @ &' ® Gr o7, . total quenchedy, o7, ,

(1) .y . .
The factorsNg”’, providing the correct nonanalytic behavior o7, and total physicak .

in the chiral expansiofiEq. (4)], are displayed in Table III.
The second of these ney loop diagrams arises from the . . . .
double hairpin vertex, pictured in Fig(l). This contribution per_formed using an improved Kogut-Susskmd quark. action,
. : . . which is known to have good scaling properti@s]. Unlike
is particularly interesting because there are two meson prop he standard Wilson fermion action. masses determined at
gators and it is therefore responsible for the nonanalytic term . . " .
linear in m_—this term being unique to the quenched case inite lattice spacing are excellent estimates of the continuum
T limit results.

The integral corresponding to this self energy can be written We are particularly concerned with the chiral extrapola-

In a similar way: tion of baryon masses and how their behavior is affected by
. KAu2(K) the quenched approximation. In §uch a study, it is esserjtial
Ng)j dk ] (8  that the method of scale determination be free from chiral
16772ffT 0 »*(K) contamination. One such method involves the static-quark
potential. As low-lying pseudoscalar mesons made of light
Note the sign change and the higher powemwoin the de- quarks exhibit negligible coupling to hadrons containing
nominator. The coefficientsN(Bz), providing the correct only heavy valence quarks, the low energy effective field
nonanalytic behavior in Eq4)—in this case the coefficient theory plays no role in the determination of the scale for
of m_—are given in Table 1ll. The sum of these four contri- these systems. In fixing the scale through such a procedure
butions then gives the net meson-loop induced self-energie@e constrains all simulations, quenched, 2-flavor, 3-flavor
within the quenched approximation,

w2

0.2 1 T T T T T
Sg=0ggtong ol V+ol @, (9) ‘
The individual contributions to thd andA masses over a 01
range of pion mass are plotted in Figs. 2 and 3. These are al
evaluated with the dipole regulator mass parameter %\ 0.0
=0.8 GeV. The corresponding self-energies from full QCD &,
are also shown for comparison. We note that in QQCD the , —0.1
contributions are typically quite a bit smaller and the double-

hairpin graph,ocd ), is repulsive. The differences are en-  _g 5
hanced for the\ where o7 is also repulsive. We observe

that the rapid, nonlinear behavigwhich is effectively much —03
larger in full QCD is restricted to the regionmf, 0.0 0.1 0.2 03 04 05 0.6
=0.2 GeV?, above which the self-energies are quite m 2 (GeV?)

smoothly varying functions of the quark mass.

FIG. 3. Various self-energy contributionsitb, for dipole mass,
A=0.8 GeV. From top down an2=0.1 Ge\, the curves corre-
spond to(where a~ over the symbol denotes a quenched QCD

The lattice data considered in this analysis come from theontribution 77,07 ®, total quenched , , o7y, 71, , o7, and
recent paper of Bernardt al. [4]. These simulations were total physical3,, .

V. FITTING PROCEDURE

094507-4
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etc., to match phenomenological static-quark forces. Effec- 1.2 T T T . |
tively, the short range (0.35-0.5fm) interactions are
matched across all simulations. 1.0
A commonly adopted method involving the static-quark
potential is the Sommer scdl@9,40. This procedure defines 08
the force,F(r), between heavy quarks at a particular length
scale, namelyr,=0.5 fm. Choosing a narrow window t0 « 0.8
study the potential avoids complications arising in dynamical
simulations where screening and ultimately string breakingis ¢.4
encountered at large separations. The lattice data analyzed i
this report use a variant of this definition, choosing to define g2
the force atr;=0.35 fm viar2F(r,)=1.00[4].
As we remarked earlier, the nonanalytic chiral behavioris g L L L ! !
governed by the infrared regions of the self-energy integrals. 065 070 075 080 085 090 095
The fact that the lattice calculations are performed on a finite A (GeV)
volume griq means th‘.”‘t the self-en_ergy integrals impIicit_ in FIG. 4. The valued is a measure of the difference between the
curren_t Iattl_ce_ simulations do ”‘?t _Include the _exact (_:h_'ralquenched and dynamical data sets after accounting for the relevant
behavior. It is important to take this into account |n.the fitting self-energy diagrams. This measure is proportional to the net area
procedure and we therefore follow Rg10] in replacing the contained between the straight lines obtained from the fits and has

Con_tinuum self-energy integrals used in the fitting process byeen normalized to the case where the self-energy diagrams are
a discrete sum over the meson momenta available on thgtally neglected.

lattice:

QCD data. This strongly suggests that the self-energies in-
c 5 1 3 cluded here, which contain the LNA and NLNA behavior
47Tf0 k dk:f d*k~ 3 ; ; . (100 appropriate to each type of simulation, contain the primary
Xy effect of quenching. To illustrate the point, Fig. 4 shows a
The self-energy integrals calculated in this way are whafheasureg, of the difference between the quenched and dy-
should be directly compared with the lattice data, and weamical data sets over the rangenof considered. This mea-
illustrate these by open squares in subsequent figures. Up&hre is proportional to the net area contained between the
obtaining the optimal fit parameters, one can evaluate th&traight lines obtained from the fits and has been normalized
integrals exactly and therefore obtain the infinite-volume [0 the case where the self-energy diagrams are totally ne-
continuum limit. The latter is the result which should be 9lected. The improved agreement between data sets over the
compared with experiment at the physical pion mass. range of dipole masses highlights the effectiveness of this

We now proceed to fit quenched lattice data with the formSelf-energy correction. It is also worth noting that the
x?/d.o.f. is also improved by incorporating the self-energies

into the fit. For the preferred dipole masgs=0.8 GeV, this
is better by a factor 2. Results of both the physical and

[by analogy with the form used in full QCD, EqL)], with quenched fits are shown together in Fig. 5. The parameters of

the self-energies evaluated, as we have just outlined, usif§€ Pest fits are displayed in Table IV. Here we see the re-
the momentum grid corresponding to the specific latticdnarkable agreement of_ the linear term of our fitting formu-
simulation. Phenomenologically speaking, the linear terms if2S: E4s{1) and(11). This strongly suggests that the behav-
Eq. (11) may be thought of as accounting for the quark masdor of the meson-clo_ud source is very similar in quenched
dependence of the pion-cloud source. This form then autg@d full QCD. The primary difference between the quenched

matically includes the expected heavy quark behavior wheré”d physical results can then be described by the meson-loop

the 7 and 5’ loop contributions are suppressed. induced self-energies. . .
The effective field theory regulator, motivated by the This observation suggests that it may well be possible to

physical structure of the meson-baryon vertex, characterizd92ake a copneption between quenched sim.ulations and had-
the finite size of the pion source. Quenched simulations ofoN Properties in the real world. One would fit quenched data
hadronic charge radii performed at moderate to heavy quarW'th appropriate self-energies to obtain the linear behavior Qf
masseg41] have been demonstrated to be consistent witf€ meson-cloud source. Then the quenched self-energies
experiment once the meson-cloud properties of full QCD ar&Vould be replaced by their full-QCD counterparts, hence ob-
taken into accounft6,42). This indicates that the size of the taining more physical results. It is clearly very important to
meson-cloud source is expected to be of similar size in botfSt this result further on other hadrogesg. for other mem-
quenched and physical QCD. For this reason we proceed ers of the octetand against dynamical simulations at lower

fit both quenched and physical data with a common value ofluark masses.

A. For a fixed choice of\, fitting to lattice data amounts to VI, A-N HYPERFINE SPLITTING

a linear fit ina and 8. It turns out that, for a range of values

of A, the values ofx and 8 found for the QQCD data are The analysis of lattice data has demonstrated the ability to
surprisingly close to the values found for the fit to dynamicaldescribe the primary difference between quenched and dy-

a

MBZEB+’BBmi+§*B(mﬁaA) (11

094507-5
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20 T T T T T -40 T T T | |
L ]
1.8 35 '\ =+ =+ Quenched - 0.8
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* = == Physical — 0.9
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FIG. 5. Fit(open squareso lattice datd 4] (quenchedA, dy- FIG. 6. Meson-loop contribution to th&-N mass splitting in

namical A) with adjusted self-energy expressions accounting forboth quenched and full QCD—for several values of the dipole
finite volume and lattice spacing artifacts. The infinite-volume, con-mass.
tinuum limit of quencheddashed linesand dynamica(solid lineg

are shown. The lower curves and data points are for the nucleon and hiral behavi f had is Kk to differ i
the upper ones for tha. INg chiral benavior or hadron masses IS Known to direr in

quenched QCD from the physical theory. This knowledge
namical simulations in terms of the meson-loop self-Nas been used to guide us in the construction of an effective

energies. Figure 6 shows the difference in the self-energfjeld theory which encompasses the correct chiral structure,
terms for theN andA in quenched and full QCD, for several and is consistent with current lattice simulations. This proce-
values of the common dipole-regulator mass. It is quite cleaglure of fitting lattice data with a linear term together with the
that there is a difference of between 150 and 250 MeV bemeson-loop corrections which give rise to the LNA and
tween the quenched and full QCD cases. Since this differNLNA behavior has been demonstrated previously to fit dy-
ence was essential in accounting for the clear differences inamical QCD simulation results remarkably well. Here we
the behavior of the baryon masses in QQCD and full QCDhave shown that the application of the same procedure to
shown in Fig. 5, we have some confidence in using thesquenched results is able to consistently fit the data in that
results to say how much of the physi®&lA mass splitting is  case as well. We note that this approach encapsulated in Egs.
associated with pion loops and how much comes from shortl) and (11) is a finite-range regulated effective field theory
range processes, such as gluon exchange. In fact, an examgbnsistent with the traditional dimensional regularization ap-
nation of Fig. 6 for the case of full QCD suggests fairly proach toyPT. By calculating next-order loop contributions
clearly that only about 50 MeV of the observed 300 MeV it is systematically improvable and model independ@®it
N-A splitting arises from pion Ioops. Of course, this result is Remarkably, a comparison of the two fits suggests that the
more dependent on the assumption of saenedipole mass  operties of theN andA, stripped of their pion clouds, are
parameter at every vertex than the fits tokhandA masses  ggqentially the same in quenched and full QCD, once the
|an|V|duaIIy. Neverth_e!ess, it seems unlikely that more than &cale is set using the Sommer scale appropriate to heavy
third of the total splitting could come from this source. quark systems. This observation is dependent on an optimal
regulator shape and size, and the assumption that the axial
VIl. CONCLUSIONS coefficients are similar in quenched and full QCD. Therefore

We have investigated the quark mass dependence of the this result should be regarded as a phenomenological link.
andA masses within the quenched approximation_ The |eadThe extent to which this observation is model independent
requires the investigation of alternative regulators and new

TABLE IV. Best fit parameters for both full and quenched dataaccurate lattice results approaching the light quark-mass re-
sets with dipole regulator, =0.8 GeV. The second set correspond gime. At present, the success of this result further motivates
to a simple linear fit, where the self-energy contributions have beemise of the phenomenologically preferred dipole, which gives

neglected. All masses are in GeV. a most accurate description of the shape of the pion-cloud

: : source. It is clearly essential to test this finding against fur-
Self-energy ~ Simulation  ay Bn ay Ba ther full QCD simulations at lighter quark masses as well as
Dipole Physical 1.27(2) 0.90(5) 145(3) 0.74(g) 'OF Other hadrons.

We have demonstrated that although the quenched ap-
Quenched 1.24(2) 0.85(6) 1.45(4) 0.72(11) proximation gives rise to more singular behavior in the chiral
Nil Physical 1.04(2) 1.07(5) 1.28(3) 0.88(8) limit, this is not likely to be observed in lattice simulations as

Quenched 1.14(2) 0.92(6) 1.44(4) 0.69(11) these contributions are quickly suppressed with increasing
quark mass. Indeed our results suggest that it will be very
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hard to detect any significant chiral curvature in the case of The case of the double meson propagator can also be
the nucleon, while for the\ there may be some small, up- performed analytically,

ward curvature. Thé&-N mass splitting increases to around

400 MeV at the physical point in QQCD. As a consequence 3 = kAu?(k)
of this behavior, the\ mass in the quenched approximation TS Nfo k—7——-
) X : . - (k)
is expected to differ from the physical mass by approxi-

mately 25%. Finally, we have shown that while a fraction of por y(k) = (A — k),

the physicalN-A mass difference can be attributed to a dif-

ference in pion self-energy loops, this is unlikely to amount 3

to more than a third of the observed splitting. o= m

(A5)
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APPENDIX A: ANALYTIC INTEGRATION 3N A5(m +5A)
w

. . . = A7
Here we summarize analytic expressions for the self- 7 51277]‘37 (A+m_)° (A7)

energy integrals. It should be noted that these expressions are

not used in fitting lattice data. For the purpose of fitting, theOnce again both integrals give the same LNA behavior,

continuum integral is replaced by a discrete sum over the

available momenta on the corresponding lattice, as described 9N

. LNA _

in Eq. (10). o M= 647 {2
Firstly we consider the case of the simple meson-loop T

digram where the internal baryon line has degenerate mass

with the external state:

m,. (A8)

For the off-diagonal contributions, where the internal
baryon is not degenerate with the external state,

3 * k4U2(k) 3 . k4u2(k
o=———>=G| dk : (A1) > us(k)
16m2f2 fo w?(k) 7 16772f§,Gfo dkw(k)[wBB,—Fw(k)]’ (A9)

Using a sharp cutoffu(k) = 6(A —k), the integral can be yjth o, finite. The results do not have a simple form. The
expressed as full expression for the case of a sharp cutoff form factor can
be found in Ref[8]. We show the LNA contribution to this

3G A\ A3 i
_ : miarctafé— +——Am,27}. A2) diagram for reference,
16’772f,n. m1T 3 4
9G m;.

. . . . o|NM=— —— logm,,. (A10)
The LNA behavior of this can then be immediately read from 128722 wpgr
this, i

3G APPENDIX B: FLAVOR SINGLET IN FULL AND
0_|LNA: _ 5 mi_ (A3) QUENCHED QCD
32wt

This appendix serves to clarify the derivation of the hair-
pin meson-baryon couplings in quencheBT.
The flavor singletn’ remains light in the quenched ap-
proximation, and is therefore an effective degree of freedom
3G AS @n the low energy sector. Such excitatiops must therefore be
=— (m>+4Am_+A2). (A4)  incorporated into the low-energy analysis. Within full QCD,
512771‘37 (A+m)4 7 resummation of internal loop diagrams renders #tiemas-
sive and hence it plays no role in the low-energy dynamics.
This gives precisely the same LNA behavior as the sharfror this reason couplings to such flavor singlet states are
cutoff, as expected because the nonanalytic behavior is dueeglected. In our analysis, we wish to compare the low-
to the infrared behavior of the integral. It is associated withenergy structure of the quenched and physical theories. In
the residue of the pion propagator pole, and hence indepethis case, a flavor singlet coupling, likéN»’, must be in-
dent of an ultraviolet cutoff. cluded in the chiral Lagrangian of full QCD in order that it is

Alternatively, our preferred dipolau(k)=A%(A%+k?)?,
also provides an analytic expression for this self-energy,
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treated on equal footing with the quenched theory. This couAll symbols retain the same meaning, unless otherwise

pling will not alter any results of the physical theory as anyspecified.

diagram would involve the propagation of a heay):. The chiral Lagrangian for full QCD can be expressed as
Here we derive best estimates for the flavor singlet cou- _

plings in quenched QCD. This is achieved by comparison of L=LotLeat Ln (B1)

the quenched and full chiral Lagrangians, under the standartihe standard octet and decuplet Lagrangians are given with

assumption that the couplings exhibit negligible change bean additional coupling to an S8) flavor singlet state. For

tween the two theorief23]. We follow the notation of La- clarity we label the octet and singlet parts of the meson ma-

brenz and Sharpg23] in the analysis of such contributions. trix, A:

Lg,=itr(Bv-DB)+2Dtr(BSH{AL" B}) + 2Ftr(BSM AL B]) + 2ubptr(B{M *,B}) + 2ubetr(B[M *,B])

+2ubotr(BB)tr(M ) + 2g4tr(BS“B)tr(AS"), (B2)
Lr,=—iT"(-D)T,+AMT'T,+ 2HT AT, + (TP AL B+ BAST") +cT"M *T,— o T'T,tr(M )

+2g.T"S T r(AS"). (B3)

The new parametergs and g, describe couplings of the £Q=i(Bv-DB)+2a(BSBA,) + 2 f(BS*A,,B)
flavor singletn’ to baryon octet and decuplet states respec- . .

tively. Within full QCD the single vertex has two topologi- +273(§S“B)Stl’(A#)+aM(§BM +)+BM(EM *B)
cally different quark flow diagrams as illustrated by the left _
and right-hand vertices of Fig(d). The left is that of ayq +o(BB)st(M ™), (B9)

insertion on one of the valence quark lines and the right is a o o o
pure gluonic coupling through a hairpin-stytgg annihila- £ =—i(T"(v-D)T,) + AM(T'T,) + 2H(T'S"A,T,)
tion. The total coupling is a sum of these two contributions.

Denoting the hairpin vertex coupling byocp and 'y'QCD for _ \/EC[?”A B+ BA 7—u]+271(?5ug—)str(A )
N 2 V! v S v §
octet and decuplet baryons respectively we have
1 +cTM*T,— o(T'T)t((M ™). (B10)
gs= Tgn’NN+ YQco: (B4)
6 It should be noted that the terms, and y. describe both
types of flavor-singlet coupling, not just that arising through
, 1 , the hairpin alone. Similarly to EqB5), in the quenched
9s= %%’Aﬂ' YqQco- (BS) theory these can be described by
The first of these interactiong,, nn (9, a4) is related to the 1
axial couplings by S(b) phenomenology. We take the stan- YsT %%’NN+ Vs (B11)
dard approach and assign
2 1 :
9= V20,nn= \/3(3F D), (86) VT g9raaty (812)

2 where the termg andy’ now correspond to the pure hairpin
9,00 = 20,0 = \@H- (B7)  couplings as used in Reff23]. Here we also note the terms
g, nn @nd g, 4 are unchanged in going to the quenched
The effective chiral Lagrangian of quenched QCIjag]  theory; this is consistent with the assumption that the chiral
parameter§ andD are unchanged between the two theories.
LOQ=,Q+ Q4 L) (B8) One can then relate the quenched chiral Lagrangian back
to that of full QCD by restricting the indices on the tensor
where meson and baryon states are now understood to Wields, B and 7, to those corresponding to the physical
constructed of ordinary quarks and bosonic quarks. The gemuarks. The details of this procedure are described in Ref.
eral Lagrangian for the heavy fields can be written in termg23]. Performing these restrictions on the octet-baryon,
of the rank-3 tensor fields as defined in Ref3], B and7, quenched chiral Lagrangiditq. (B9)] one finds
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P 2 _ 1 _ 1 _
LiRlr=i(Bv-DB)|+ 3(2a— BII(BS*A,B) + 5(~ a—4B)r(BS'BA,) + 5 (a+4B+6y)(BS'B)UI(A,)

+ %(2aM—BM)tr(§M B)+ %(— ay—4By)tr(BBM *)+ %(aM +4By+60)tr(BB)tr(M ¥).  (B13

Equating this with Eq(B2) gives 1 4 2 2
) §01+ §,3+ §gn’NN+27= §gn’NN+27QCD=
§(2a—B)=2D+2F, (B14) (B20)
1 and combining with Eqs(B14), (B15) one arrives at
~(—a—4B)=2D—2F, (B15)
3 ¥=%Yocot+ D—F. (B21)
_ The restrictions are much simpler for the decuplet case and
=(a+4B+67y,) =20, B16 .
3(a' B Ys) Js ( ) one finds
1 [
< (2ay—By)=2ubp+2ubs,  (B1D Y= Yaeo: (822

3
In estimating the hairpin-type couplings in full QCD one
assumes that they are relatively sm <g,nN, due to
(—an—4Bu)=2ubp—2ube, (B18) OZI-type suppregsiorli43]. Withyana?(c%cot)usggrgﬂments for
the decuplet, we takgocp= yéCD=O. We do note that the
1 U(1) axial anomaly may be effective in overcoming the OZI
glamt4Bu+60)=2ub,. (B19  ryle in the case of’ couplings[33], but as we mentioned in
the text the main conclusions of our present analysis are not
In extracting the flavor-singlet part, EGB16) provides us very sensitive to the precise value of thé-nucleon cou-
with pling.
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