39 research outputs found

    Degenerative Veränderungen im alternden Innenohr, mit besonderer Berücksichtigung der vasculären Veränderungen, in Flächenpräparaten der menschlichen Cochlea dargestellt

    Full text link
    Temporal bones from 150 patients, ranging in age from fetuses and newborn to 97 years, were studied by the technique of microdissection and the use of surface specimens stained with OSO 4 . Hair cell and nerve degeneration were seen in the extreme basal turn of the cochlea even in children. In the fetal cochlea vascularization is very dense, in the newborn and infant somewhat less so. A gradual involution of blood vessels occurs postnatally and continues with maturity and aging. Involution is seen especially in the membranous wall of the cochlea and in the system of spiral vessels of the basilar membrane and vestibular lip. During the first decade the radiating arterioles and the outer spiral vessel in the basal turn are reduced to their adult size. In presbycusis material we observed a marked loss of capillaries and of some of the radiating arterioles in the spiral ligament. Other arterioles had thickened walls. This devascularization was accompanied by atrophy and acellularity of the spiral ligament and atrophy of the stria. Atrophy of the spiral vessels was seen, especially in the lower half of the basal turn. Most of the cochlear blood vessels have clearly distinguishable perivascular spaces. Vessels which had become occluded and disappeared left behind them intervascular strands and/or avascular channels . Such channels were seen to connect the perivascular space of one capillary with that of another, representing the perivascular space of the vessel which had atrophied. The hair cell and nerve degeneration seen in presbycusis may be caused, at least in part, by microangiopathy of this type. Similar vascular changes have been observed in retinal vessels. It is possible that the gradual reduction of blood supply through the disappearance of capillaries occurs in many tissues of the body and plays an important role in the aging process. Mit Hilfe der Oberflächenpräparation wurden von uns 150 menschliche Labyrinthe aller Altersgruppen untersucht. Es wurde eine Haarzellen-und Nervendegeneration schon im Kindesalter beobachtet. Blutgefäße in der Schnecke haben perivasculdre Spalten; Gefäße atrophieren and werden zu „avascular channels”, leeren Spaltrdumen oder Striingen. Bei Presbyakusis fällt neben der Haarzell- and Nervendegeneration in der Basalwindung der Schnecke die Gefäßatrophie im Ligamentum spirale und der Membrana basilaris auf. Dazu kommt noch eine beträchtliche Atrophie des Ligamentum spirale und der Stria vascularis. Bemerkenswert ist, daß die Devascularisation schon im Kindesalter beginnt.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47255/1/405_2004_Article_BF00373313.pd

    Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states with the ATLAS detector

    Get PDF
    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states is performed using 20.3 fb −1 of pp collision data recorded at √ s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the W H / Z H invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets

    Stability of Asymmetric Equilibrium Flight States

    No full text
    corecore