235 research outputs found
High Levels of Genetic Divergence Detected in Sacramento Perch Suggests Two Divergent Translocation Sources
Translocation has been used to conserve imperiled fishes and create new fisheries. One species for which translocation has played a significant role is the Sacramento Perch Archoplites interruptus. Extirpated from its native range, the Sacramento Perch has been introduced throughout California and Nevada through multiple translocation events, though historical records are incomplete. Recent assessments of eight previously uncharacterized Sacramento Perch populations have prompted reevaluation of range-wide population structure to inform a genetic management plan for long-term resiliency of this species. We examined Sacramento Perch genetic diversity and population structure across the current range of the species using 12 microsatellite markers. We analyzed samples from the eight uncharacterized populations and seven populations previously studied by Schwartz and May (2008). Bayesian clustering supported two distinct clusters of Sacramento Perch herein designated as A and B. Within these two clusters we detected hierarchical substructure, likely due to genetic drift after population founding. Genetic differentiation among populations within the same cluster was relatively low (FST = 0.023–0.176), while differentiation among populations from different clusters was higher (FST = 0.190–0.320). The existence of two strongly divergent genetic clusters in Sacramento Perch suggests two distinct translocation sources, and we recommend that these clusters be treated as genetic management units (GMUs). The B GMU populations had fairly low levels of genetic diversity relative to the A GMU populations. All populations showed evidence of past bottlenecks, and most had effective population sizes placing them at risk for inbreeding depression. Human-facilitated gene flow is recommended to prevent further genetic diversity loss. Due to uncertainty surrounding Sacramento Perch translocation history and strong levels of divergence between the two GMUs, translocations should be facilitated only between populations within the same GMU
The CARMENES search for exoplanets around M dwarfs: Radial-velocity variations of active stars in visual-channel spectra
Previous simulations predicted the activity-induced radial-velocity (RV)
variations of M dwarfs to range from cm/s to km/s, depending on
various stellar and activity parameters. We investigate the observed relations
between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing
CARMENES high-resolution visual-channel spectra (m), which were
taken within the CARMENES RV planet survey during its first months of
operation. During this time, of the CARMENES-sample stars were observed
at least five times. From each spectrum we derived a relative RV and a measure
of chromospheric H emission. In addition, we estimated the chromatic
index (CRX) of each spectrum, which is a measure of the RV wavelength
dependence. Despite having a median number of only measurements per star,
we show that the RV variations of the stars with RV scatter of m/s and a
projected rotation velocity km/s are caused mainly by activity.
We name these stars `active RV-loud stars' and find their occurrence to
increase with spectral type: from for early-type M dwarfs
(MV) through for mid-type M dwarfs (MV) to
for late-type M dwarfs (MV). Their RV-scatter amplitude is
found to be correlated mainly with . For about half of the stars, we
also find a linear RVCRX anticorrelation, which indicates that their
activity-induced RV scatter is lower at longer wavelengths. For most of them we
can exclude a linear correlation between RV and H emission. Our results
are in agreement with simulated activity-induced RV variations in M dwarfs. The
RV variations of most active RV-loud M dwarfs are likely to be caused by dark
spots on their surfaces, which move in and out of view as the stars rotate.Comment: A&A accepte
The field high-amplitude SX Phe variable BL Cam: results from a multisite photometric campaign. II. Evidence of a binary - possibly triple - system
Short-period high-amplitude pulsating stars of Population I ( Sct
stars) and II (SX Phe variables) exist in the lower part of the classical
(Cepheid) instability strip. Most of them have very simple pulsational
behaviours, only one or two radial modes being excited. Nevertheless, BL Cam is
a unique object among them, being an extreme metal-deficient field
high-amplitude SX Phe variable with a large number of frequencies. Based on a
frequency analysis, a pulsational interpretation was previously given. aims
heading (mandatory) We attempt to interpret the long-term behaviour of the
residuals that were not taken into account in the previous Observed-Calculated
(O-C) short-term analyses. methods heading (mandatory) An investigation of the
O-C times has been carried out, using a data set based on the previous
published times of light maxima, largely enriched by those obtained during an
intensive multisite photometric campaign of BL Cam lasting several months.
results heading (mandatory) In addition to a positive (161 3) x 10
yr secular relative increase in the main pulsation period of BL Cam, we
detected in the O-C data short- (144.2 d) and long-term ( 3400 d)
variations, both incompatible with a scenario of stellar evolution. conclusions
heading (mandatory) Interpreted as a light travel-time effect, the short-term
O-C variation is indicative of a massive stellar component (0.46 to 1
M_{\sun}) with a short period orbit (144.2 d), within a distance of 0.7 AU
from the primary. More observations are needed to confirm the long-term O-C
variations: if they were also to be caused by a light travel-time effect, they
could be interpreted in terms of a third component, in this case probably a
brown dwarf star ( 0.03 \ M_{\sun}), orbiting in 3400 d at a
distance of 4.5 AU from the primary.Comment: 7 pages, 5 figures, accepted for publication in A&
Recommended from our members
Seeds of good anthropocenes: developing sustainability scenarios for Northern Europe
Scenario development helps people think about a broad variety of possible futures; however, the global environmental change community has thus far developed few positive scenarios for the future of the planet and humanity. Those that have been developed tend to focus on the role of a few common, large-scale external drivers, such as technology or environmental policy, even though pathways of positive change are often driven by surprising or bottom-up initiatives that most scenarios assume are unchanging. We describe an approach, pioneered in Southern Africa and tested here in a new context in Northern Europe, to developing scenarios using existing bottom-up transformative initiatives to examine plausible transitions towards positive, sustainable futures. By starting from existing, but marginal initiatives, as well as current trends, we were able to identify system characteristics that may play a key role in sustainability transitions (e.g., gender issues, inequity, governance, behavioral change) that are currently under-explored in global environmental scenarios. We suggest that this approach could be applied in other places to experiment further with the methodology and its potential applications, and to explore what transitions to desirables futures might be like in different places
The shallow-decay phase in both optical and x-ray afterglows of Swift GRB 090529A: Energy injection into a wind-type medium?
The energy injection model is usually proposed to interpret the shallow-decay
phase in Swift GRB X-ray afterglows. However, very few GRBs have simultaneous
signatures of energy injection in their optical and X-ray afterglows. Here, we
report optical observations of GRB 090529A from 2000 sec to sec
after the burst, in which an achromatic decay is seen at both wavelengths. The
optical light curve shows a decay from 0.37 to 0.99 with a break at
sec. In the same time interval, the decay indices of the X-ray light curve
changed from 0.04 to 1.2. Comparing these values with the closure relations,
the segment after 3 sec is consistent with the prediction of the
forward shock in an ISM medium without any energy injection. The shallow-decay
phase between 2000 to 3 sec could be due to the external shock in
a wind-type-like medium with an energy injection under the condition of . However, the constraint of the spectral region is not well
consistent with the multi-band observations. For this shallow-decay phase,
other models are also possible, such as energy injection with evolving
microphysical parameters, or a jet viewed off-axis,etc.Comment: 19pages,2gigures, accepted by MNRA
The near-infrared helium triplet: A tracer of extended atmospheres
Stars and planetary system
Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.This research was funded by the Korean
Ministry of Land, Infrastructure and Transport through a grant
(16AWMP-B079625-03) from the Water Management Research
Program
280 one-opposition near-Earth asteroids recovered by the EURONEAR with the <i>Isaac Newton</i> Telescope
Context. One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions.
Aims. We aimed to recover more than half of the one-opposition NEAs recommended for observations by the Minor Planet Center (MPC) using the Isaac Newton Telescope (INT) in soft-override mode and some fractions of available D-nights. During about 130 h in total between 2013 and 2016, we targeted 368 NEAs, among which 56 potentially hazardous asteroids (PHAs), observing 437 INT Wide Field Camera (WFC) fields and recovering 280 NEAs (76% of all targets).
Methods. Engaging a core team of about ten students and amateurs, we used the THELI, Astrometrica, and the Find_Orb software to identify all moving objects using the blink and track-and-stack method for the faintest targets and plotting the positional uncertainty ellipse from NEODyS.
Results. Most targets and recovered objects had apparent magnitudes centered around V ~ 22.8 mag, with some becoming as faint as V ~ 24 mag. One hundred and three objects (representing 28% of all targets) were recovered by EURONEAR alone by Aug. 2017. Orbital arcs were prolonged typically from a few weeks to a few years; our oldest recoveries reach 16 years. The O−C residuals for our 1854 NEA astrometric positions show that most measurements cluster closely around the origin. In addition to the recovered NEAs, 22 000 positions of about 3500 known minor planets and another 10 000 observations of about 1500 unknown objects (mostly main-belt objects) were promptly reported to the MPC by our team. Four new NEAs were discovered serendipitously in the analyzed fields and were promptly secured with the INT and other telescopes, while two more NEAs were lost due to extremely fast motion and lack of rapid follow-up time. They increase the counting to nine NEAs discovered by the EURONEAR in 2014 and 2015.
Conclusions. Targeted projects to recover one-opposition NEAs are efficient in override access, especially using at least two-meter class and preferably larger field telescopes located in good sites, which appear even more efficient than the existing surveys
CALIFA, the Calar Alto Legacy Integral Field Area survey: III. Second public data release
García-Benito, R. et. al.© ESO, 2015. This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500 Å with a spectral resolution of 6.0 Å (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å with a spectral resolution of 2.3 Å (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improvedspectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2.4. In total, the second data release contains over 1.5 million spectra.R.G.B., R.G.D., and E.P. are supported by the Spanish Ministerio de Ciencia e Innovacion under grant AYA2010-15081. S.Z. is supported by the EU Marie Curie Integration Grant >SteMaGE> Nr. PCIG12-GA-2012-326466 (Call Identifier: FP7-PEOPLE-2012 CIG). J.F.B. acknowledges support from grants AYA2010-21322-C03-02 and AIB-2010-DE-00227 from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement number 289313. Support for L.G. is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, M.A.S.L.G. also acknowledges support by CONICYT through FONDECYT grant 3140566. A.G. acknowledges support from the FP7/2007-2013 under grant agreement n. 267251 (AstroFIt). J.M.G. acknowledges support from the Fundacao para a Ciencia e a Tecnologia (FCT) through the Fellowship SFRH/BPD/66958/2009 from FCT (Portugal) and research grant PTDC/FIS-AST/3214/2012. RAM was funded by the Spanish programme of International Campus of Excellence Moncloa (CEI). J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). I.M., J.M. and A.d.O. acknowledge the support by the projects AYA2010-15196 from the Spanish Ministerio de Ciencia e Innovacion and TIC 114 and PO08-TIC-3531 from Junta de Andalucia. AMI acknowledges support from Agence Nationale de la Recherche through the STILISM project (ANR-12-BS05-0016-02). M.M. acknowledges financial support from AYA2010-21887-C04-02 from the Ministerio de Economia y Competitividad. P.P. is supported by an FCT Investigador 2013 Contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). P.P. acknowledges support by FCT under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FIS-AST/3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE). T.R.L. thanks the support of the Spanish Ministerio de Educacion, Cultura y Deporte by means of the FPU fellowship. PSB acknowledges support from the Ramon y Cajal program, grant ATA2010-21322-C03-02 from the Spanish Ministry of Economy and Competitiveness (MINECO). C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. V.W. acknowledges support from the European Research Council Starting Grant (SEDMorph P.I. V. Wild) and European Career Re-integration Grant (Phiz-Ev P.I.V. Wild). Y.A. acknowledges financial support from the Ramon y Cajal programme (RyC-2011-09461) and project AYA2013-47742-C4-3-P, both managed by the Ministerio de Economia y Competitividad, as well as the >Study of Emission-Line Galaxies with Integral-Field Spectroscopy> (SELGIFS) programme, funded by the EU (FP7-PEOPLE-2013-IRSES-612701) within the Marie-Sklodowska-Curie Actions schemePeer Reviewe
- …