58 research outputs found

    Energetic-ion acceleration and transport in the upstream region of Jupiter: Voyager 1 and 2

    Get PDF
    Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at Earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at Earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic ( approximately 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, the compositional patterns are examined together with typical energy spectra in each of these regions. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter

    The statistical morphology of Saturn's equatorial energetic neutral atom emission

    Get PDF
    Saturn's magnetosphere is an efficient emitter of energetic neutral atoms (ENAs), created through charge exchange of energetic ions with the extended neutral cloud originating from the icy moon Enceladus. We present an analysis using the complete image set captured by Cassini’s Ion Neutral Camera (INCA) to characterise Saturn’s average ENA morphology. Concentric tori are formed around the planet by oxygen and hydrogen ENAs, with intensity peaks between 7-10 Rs radial distance, with a ~1-2 Rs dayside offset. Nightside intensity is brighter than the dayside, likely the result of enhancements following large-scale plasma injections from the magnetotail, and influence of the noon-midnight electric field. Global intensity is clearly modulated with the near-planetary rotation period. This Cassini-era profile of Saturn's ENA emission advances our understanding of how volcanic moons can influence plasma dynamics in giant magnetospheres and is timely ahead of the planned JUICE mission, which carries the first dedicated ENA detector to Jupiter

    Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions

    Full text link
    We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close to Saturn's rotation period usually recur in the same magnetospheric location. We suggest that these events result from current sheet acceleration in the 15-20 Rs range, probably associated with reconnection and plasmoid formation in Saturn's magnetotail. Simultaneous auroral observations by the Hubble Space Telescope (HST) and the Cassini Ultraviolet Imaging Spectrometer (UVIS) suggest a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent ENA enhancements coincide closely with bursts of Saturn kilometric radiation, again pointing to possible linkage with high latitude auroral processes. We argue that the rotating azimuthal asymmetry of the ring current pressure revealed in the ENA images creates an associated rotating field aligned current system linking to the ionosphere and driving the correlated auroral processes

    Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope

    Get PDF
    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn’s auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current

    Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94634/1/rog1672.pd

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link

    Three‐Dimensional Currents in Saturn's Magnetosphere

    No full text
    corecore