35 research outputs found

    Efficacy of ATR inhibitors as single agents in Ewing sarcoma

    Get PDF
    Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suffer from high endogenous levels of RS, rendering them particularly dependent on the ATR pathway. Accordingly, two independent ATR inhibitors show in vitro toxicity in ES cell lines as well as in vivo efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas.We would want to thank Enrique de Alava for providing ES lines. Work in O.F. laboratory was supported by Fundación Botín, by Banco Santander through its Santander Universities Global Division and by grants from MINECO (SAF2014-57791-REDC and SAF2014-59498-R), Fundació La Marato de TV3, Howard Hughes Medical Institute and the European Research Council (ERC-617840). The A.N. laboratory was supported by the Intramural Research Program of the NIH, the National Cancer Institute, the Center for Cancer Research, an Ellison Medical Foundation Senior Scholar in Aging, and the Alex Lemonade Stand Foundation Award. J.A. laboratory is supported by Asociación Pablo Ugarte, ASION-La Hucha de Tomás, Fundación La Sonrisa de Alex and Instituto de Salud Carlos III (PI12/00816 and Spanish Cancer Network RTICC RD12/0036/0027). A.L. laboratory was supported by the Danish National Research Foundation (DNRF115), Danish Council for Independent Research (Sapere Aude, DFF-Starting Grant 2014) and Danish Cancer Society (KBVU-2014).S

    Dystrophinopathy Phenotypes and Modifying Factors in Exon 45-55 Deletion

    Get PDF
    Duchenne muscular dystrophy (DMD) exon 45-55 deletion (del45-55) has been postulated as a model that could treat up to 60% of DMD patients, but the associated clinical variability and complications require clarification. We aimed to understand the phenotypes and potential modifying factors of this dystrophinopathy subset. This cross-sectional, multicenter cohort study applied clinical and functional evaluation. Next generation sequencing was employed to identify intronic breakpoints and their impact on the Dp140 promotor, intronic long noncoding RNA, and regulatory splicing sequences. DMD modifiers (SPP1, LTBP4, ACTN3) and concomitant mutations were also assessed. Haplotypes were built using DMD single nucleotide polymorphisms. Dystrophin expression was evaluated via immunostaining, Western blotting, reverse transcription polymerase chain reaction (PCR), and droplet digital PCR in 9 muscle biopsies. The series comprised 57 subjects (23 index) expressing Becker phenotype (28%), isolated cardiopathy (19%), and asymptomatic features (53%). Cognitive impairment occurred in 90% of children. Patients were classified according to 10 distinct index-case breakpoints; 4 of them were recurrent due to founder events. A specific breakpoint (D5) was associated with severity, but no significant effect was appreciated due to the changes in intronic sequences. All biopsies showed dystrophin expression of >67% and traces of alternative del45-57 transcript that were not deemed pathogenically relevant. Only the LTBP4 haplotype appeared associated the presence of cardiopathy among the explored extragenic factors. We confirmed that del45-55 segregates a high proportion of benign phenotypes, severe cases, and isolated cardiac and cognitive presentations. Although some influence of the intronic breakpoint position and the LTBP4 modifier may exist, the pathomechanisms responsible for the phenotypic variability remain largely unresolved. ANN NEUROL 2022;92:793-80

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    State of the Climate in 2016

    Get PDF

    Síntesis y caracterización dosimétrica de CaSO4:Dy para rayos X de baja energía

    No full text
    En este trabajo presentamos una breve introducción a la termoluminiscencia, sus características y efectos, los cuales podremos utilizar con fines dosimétricos, esto para inferir la cantidad de dosis absorbida por un material, que para nuestro caso será CaSO4:Dy, aprovechando la alta sensibilidad que posee este material ante las radiaciones ionizantes y en particular para bajas energías

    Caracterización de materiales Termoluminiscentes para Dosimetría en Braquiterapia HDR

    No full text
    En este trabajo se presentan los resultados experimentales de la caracterización termoluminiscente de LiF (TLD-100). Para lo cual, de un lote inicial de dosímetros comerciales TLD-100 fueron seleccionados e irradiado en una bomba de cobalto-60 localizado en el Hospital Juárez de México. Las características estudiadas fueron: homogenización del lote, curva termoluminiscente (TL), reproducibilidad de la respuesta y la respuesta en función de la dosis. Los resultados obtenidos muestran que los TLD-100 para uso clínico en la determinación de dosis recibida, durante los tratamientos de braquiterapia de alta tasa de dosis (HDR) en pacientes de CaCu, son favorables

    Dosimetría clínica en Tomografía Computada por Termoluminiscencia.

    No full text
    El presente proyecto se aborda el uso de la dosimetría termoluminiscente para determinar la dosis de rayos X absorbida en los órganos críticos de pacientes sometidos a estudios de radiodiagnóstico usando tomografía axial computada (TAC). Para realizar la dosimetría se emplearán dosímetros de estado sólido de LiF:Mg,Cu,P+PTFE de fabricación nacional, debido a sus características, tales como su alta sensibilidad, equivalencia con el tejido humano, buena precisión y exactitud, bajo desvanecimiento e inalterables por las condiciones ambientales

    Calibración del LiF: Mg, Ti para la Aplicación en Dosimetría Clínica en Tomografía Computada por Termoluminiscencia

    No full text
    En dosimetría clínica para la determinación de la dosis absorbida de los órganos críticos, en estudios de diagnostico medico específicamente en tomografía computada, se hace uso de materiales de estado sólido, como es el TLD-100 (LiF: Mg, Ti ), que en este trabajo se presenta su curva de brillo y su proceso de calibración, para lo cual se establecen los dosímetros de campo, a emplear en el fantoma rando en estudios específicos de tomografía computada. La finalidad de calibrar dosímetros TLD es asegurarse que todos los dosímetros de un sistema tendrán básicamente la misma respuesta al ser expuestos a un campo de radiación (60Co)

    Medición de Radiación Dispersa a Distancia en Tomografía Computada de Escaneo de Pelvis en Fantoma Rando por Termoluminiscencia

    No full text
    En dosimetría clínica la determinación de la dosis absorbida en los órganos críticos, en estudios de radiodiagnóstico específicamente en tomografía computada, se hace uso de materiales de estado sólido, como es el TLD-100 (LiF: Mg, Ti ), que en este trabajo se presenta su respuesta en función de la dosis (Linealidad), la radiación dispersa en un estudio de pelvis utilizando un Fantoma Rando
    corecore