49 research outputs found

    Composite Fermion Description of the Excitations of the Paired Pfaffian Fractional Quantum Hall State

    Get PDF
    We review the recently developed bi-partite composite fermion model, in the context of so-called Pfaffian incompressible quantum liquid with fractional and non-Abelian quasiparticle statistics, a promising model for describing the correlated many-electron ground state responsible for fractional quantum Hall effect at the Landau level filling factor ? = 5/2. We use the concept of composite fermion partitions to demonstrate the emergence of an essential ingredient of the non-Abelian braid statistics – the topological degeneracy of spatially indistinguishable configurations of multiple widely separated (non-interacting) quasiparticles

    Two-Step Model of Fusion for Synthesis of Superheavy Elements

    Get PDF
    A new model is proposed for fusion mechanisms of massive nuclear systems where so-called fusion hindrance exists. The model describes two-body collision processes in an approaching phase and shape evolutions of an amalgamated system into the compound nucleus formation. It is applied to 48^{48}Ca-induced reactions and is found to reproduce the experimental fusion cross sections extremely well, without any free parameter. Combined with the statistical decay theory, residue cross sections for the superheavy elements can be readily calculated. Examples are given.Comment: 4 pages, 4 figure

    Dynamical Mass Generation of Composite Dirac Fermions and Fractional Quantum Hall Effects near Charge Neutrality in Graphene

    Full text link
    We develop a composite Dirac fermion theory for the fractional quantum Hall effects (QHE) near charge neutrality in graphene. We show that the interactions between the composite Dirac fermions lead to dynamical mass generation through exciton condensation. The four-fold spin-valley degeneracy is fully lifted due to the mass generation and the exchange effects such that the odd-denominator fractional QHE observed in the vicinity of charge neutrality can be understood in terms of the integer QHE of the composite Dirac fermions. At the filling factor Μ=1/2\nu=1/2, we show that the massive composite Dirac fermion liquid is unstable against chiral p-wave pairing for weak Coulomb interactions and the ground state is a paired nonabelian state described by the Moore-Read Pfaffian in the long wavelength limit.Comment: Extended, published version, 9 pages, 3 figure

    Evaluation of the total photoabsorption cross sections for actinides from photofission data and model calculations

    Full text link
    We have calculated the fission probabilities for 237-Np, 233,235,238-U, 232-Th, and nat-Pb following the absorption of photons with energies from 68 MeV to 3.77 GeV using the RELDIS Monte-Carlo code. This code implements the cascade-evaporation-fission model of intermediate-energy photonuclear reactions. It includes multiparticle production in photoreactions on intranuclear nucleons, pre-equilibrium emission, and the statistical decay of excited residual nuclei via competition of evaporation, fission, and multifragmentation processes. The calculations show that in the GeV energy region the fission process is not solely responsible for the entire total photoabsorption cross section, even for the actinides: ~55-70% for 232-Th, \~70-80% for 238-U, and ~80-95% for 233-U, 235-U, and 237-Np. This is because certain residual nuclei that are created by deep photospallation at GeV photon energies have relatively low fission probabilities. Using the recent experimental data on photofission cross sections for 237-Np and 233,235,238-U from the Saskatchewan and Jefferson Laboratories and our calculated fission probabilities, we infer the total photoabsorption cross sections for these four nuclei. The resulting cross sections per nucleon agree in shape and in magnitude with each other. However, disagreement in magnitude with total-photoabsorption cross-section data from previous measurements for nuclei from C to Pb calls into question the concept of a ``Universal Curve'' for the photoabsorption cross section per nucleon for all nuclei.Comment: 39 pages including 11 figure

    Highly deformed 40^{40}Ca configurations in 28^{28}Si + 12^{12}C

    Full text link
    The possible occurrence of highly deformed configurations in the 40^{40}Ca di-nuclear system formed in the 28^{28}Si + 12^{12}C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurements of the heavy fragments (A ≄\geq 10) and their associated light charged particles (protons and α\alpha particles) have been made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding energies of Elab(28E_{lab} (^{28}Si) = 112 MeV and 180 MeV by using the {\sc ICARE} charged particle multidetector array. The energy spectra, velocity distributions, and both in-plane and out-of-plane angular correlations of light charged particles are compared to statistical-model calculations using a consistent set of parameters with spin-dependent level densities. The analysis suggests the onset of large nuclear deformation in 40^{40}Ca at high spin.Comment: 33 pages, 11 figure

    Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter

    Get PDF
    The properties of excited nuclear matter and the quest for a phase transition which is expected to exist in this system are the subject of intensive investigations. High energy nuclear collisions between finite nuclei which lead to matter fragmentation are used to investigate these properties. The present report covers effective work done on the subject over the two last decades. The analysis of experimental data is confronted with two major problems, the setting up of thermodynamic equilibrium in a time-dependent fragmentation process and the finite size of nuclei. The present status concerning the first point is presented. Simple classical models of disordered systems are derived starting with the generic bond percolation approach. These lattice and cellular equilibrium models, like percolation approaches, describe successfully experimental fragment multiplicity distributions. They also show the properties of systems which undergo a thermodynamic phase transition. Physical observables which are devised to show the existence and to fix the order of critical behaviour are presented. Applications to the models are shown. Thermodynamic properties of finite systems undergoing critical behaviour are advantageously described in the framework of the microcanonical ensemble. Applications to the designed models and to experimental data are presented and analysed. Perspectives of further developments of the field are suggested.Comment: 150 pages including 28 figures. To be published in Phys. Rep. Corrected discussion in section 3.2.3 and new Fig.5. New caption of Fig.2
    corecore