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We review the recently developed bi-partite composite fermion model, in the context of so-called Pfaffian 
incompressible quantum liquid with fractional and non-Abelian quasiparticle statistics, a promising model 
for describing the correlated many-electron ground state responsible for fractional quantum Hall effect at 
the Landau level filling factor ν = 5/2. We use the concept of composite fermion partitions to demonstrate 
the emergence of an essential ingredient of the non-Abelian braid statistics – the topological degeneracy of 
spatially indistinguishable configurations of multiple widely separated (non-interacting) quasiparticles. 
 
PACS: 73.43.-f, 05.30.Pr, 71.10.Pm 

 
1. Introduction 

The fractional quantum Hall effect [1] is a macroscopic 
manifestation of the formation of a new phase of matter 
in quasi-two-dimensional systems of interacting electrons 
exposed to a high perpendicular magnetic field B [2]. The 
phenomenon consists of the simultaneous quantization of 
the perpendicular (Hall) resistivity ρxy and the vanishing 
of the longitudinal resistivity ρxx. It occurs when electrons 
fill a particular fraction νn=1/3, 2/5, etc., of a massively 
degenerate Landau level (labeled by n=0, 1, …), which is 
effectively decoupled from all other levels because of the 
large cyclotron energy separation ħωc ∝ B, exceeding the 
characteristic interaction (Coulomb) energy e2/λ ∝ B1/2, 
defined in terms of magnetic length scale λ = (ħc/eB)1/2. 

The family of incompressible electron liquids occurring 
in the lowest Landau level (n=0) are well understood in 
terms of “composite fermions” (CFs) [3]. These novel 
particles are defined as bound states of electric charge 
and magnetic flux – i.e., as bound states electrons and an 
even number 2p of magnetic flux quanta φ0=hc/e, moving 
in an appropriately reduced effective magnetic field B* = 
B – 2pφ0ς, where ς is the electron concentration (simply 
connected to the filling factor via νB = φ0ς or ν = 2πλ2ς), 
and interacting through greatly reduced residual forces. 
The effective field B* can be converted to an effective 
filling factor of the composite fermions, ν* = (ν-1 – 2p)-1. 
More precisely, the composite fermions are thought of as 
bound states of the electrons and pairs of vortices of the 
many-electron wave function, which (for N electrons in 
the lowest Landau level of degeneracy Nφ = Φ/φ0, where 
Φ = BA is the total magnetic flux through a sample of 
area A, in the symmetric gauge) has the form of an anti-
symmetric polynomial in the complex electronic 
coordinates z = x + iy, of a fixed degree Nφ, multiplied by 
a symmetric exponential tail. The emergence of weakly 
interacting composite fermions in a system of strongly 
interacting quasi-two-dimensional electrons in the Hilbert 
space severely restricted (as a result of the single-particle 
Landau quantization) to an isolated Landau level is thus 
equivalent to specifying a particular form of electronic 
correlation, given by a simple Jastrow prefactor of power 
2p in the many-electron wave function. 

The composite fermion theory gives an elegant and 
intuitive understanding of the – otherwise completely 
unexpected – incompressibility of electrons observed 
experimentally at a (universal) series of filling factors ν = 
q/(2pq+1), in terms of the essentially non-interacting 
composite fermions filling an integral number ν*=q of 
Landau levels, and thus forming a unique ground state 
separated from the continuum of excitations by an 
effective composite fermion cyclotron gap ħωc*. The two 
kinds of quasiparticles – positive quasiholes (QHs) and 
negative quasielectrons (QEs), formed in an underlying 
incompressible electron liquid as a result of insertion or 
removal of a magnetic flux quantum, correspond to the 
vacancies in the otherwise full n*=q composite fermion 
level or to the few composite fermions in the otherwise 
empty level n*=q+1. Furthermore, the collective neutral 
modes correspond to excitonic states of QE+QH pairs. 

The accuracy of the composite fermion predictions is 
illustrated in Figs. 1 and 2, showing several examples of 
energy spectra, calculated on a sphere [4] for fairly large 
finite systems representing a selection of different filling 
factors ν. In this geometry, electrons are confined to the 
surface of a unit sphere, Coulomb interaction potential is 
taken proportional to the inverse chord distance, and the 
radial magnetic field is produced by a Dirac monopole of 
the quantized strength Φ = 2Q hc/e, yielding the magnetic 
length λ=Q-1/2 (relative to the unit radius) and the Landau 
level degeneracy of 2Q+1 (nth Landau level appearing in 
the form of an angular momentum shell with ℓ = Q + n). 
The many-electron spectra are then obtained in the form 
of dependence of (Coulomb) energy E as a function of 
total orbital angular momentum L (the conserved orbital 
quantum number on a sphere). 

The composite fermion theory also predicts the exact 
form of the many-electron wave-functions (appropriate 
polynomials) describing both the ground states and their 
excitations. The composite fermion wave-functions are 
generally constructed as 
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where Ψq  is a Slater determinant many-fermion wave-
function describing q filled Landau levels, possibly with 
a number of additional vacancies in the level q and/or 
particles in the level q+1, D2p is the Jastrow correlation 



factor, and PLLL projects the wave function into the 
lowest Landau level. The exponential tail exp(-Σ(|zi|/2λ)2) 
is identical for each polynomial, so it is omitted here for 
simplicity. Such wave-functions were used in Figs. 1 and 
2 for comparison with the exact eigenstates of the 
Coulomb interaction. 
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Fig. 1. Demonstration of the accuracy of the composite 
fermion prediction of the Coulomb energy spectra in 
the partially filled lowest Landau level, calculated in 
the spherical geometry for fairly large numbers of 
electrons N and the magnetic monopole strengths 2Q 
corresponding to the indicated filling factors ν = 1/3 
(here, two different sizes; only the lowest states shown 
at each angular momentum L for N=13), 2/5, and 3/7, 
corresponding to (respectively) q = 1, 2, and 3 Landau 
levels filled by the composite fermions each carrying 
2p=2 magnetic flux quanta. The darker dots are the 
Coulomb eigenenergies (obtained from exact numerical 
diagonalization of the N-body Coulomb hamiltonians) 
and the brighter ones are the average Coulomb energies 
of the corresponding composite fermion wavefunctions. 
The states shown with larger dots are the nondegenerate 
(L=0) ground states and the “magneto-roton” collective 
modes (with L>0 representing quantized wave vectors). 
The pairs of numbers indicated for each ground state 
are the (exact Coulomb and composite fermion trial) 
correlation energies per particle, obtained from E/N by 
subtraction of the electrostatic contribution from the 
charge compensating background, (Ne)2/2. 
 
The accumulated wealth of successful tests (numerical 

and experimental) have established composite fermions 
as a secure framework of our understanding of fractional 
quantum Hall effect in the lowest Landau level. 

2. Topological degeneracy, non-Abelian statistics 

The quasiparticles of incompressible electron liquids in 
the lowest Landau level, which in the composite fermion 
theory are represented by the vacancies or particles in the 
almost full or almost empty composite fermion levels 
have fractional charge excess or deficiency associated 
with them (±e/q) and obey Abelian braid statistics. More 
exotic many-electron wave-functions, describing 
hypothetical ground states with quasiparticle excitations 
obeying non-Abelian braid statistics, have been proposed 
within the conformal field theories corresponding to the 
sets of fields with multi-valued fusion rules. The simplest 
one is called the Z2 or Ising theory, which contains one 
boson “vacuum” field 1, one fermion “electron” field ψ, 

and an additional half-fermion “vortex” field σ, with the 
following set of fusion rules [5]: 

ψ × ψ = 1, 
σ × ψ = σ, 
σ × σ = 1 + ψ, (2) 

which say that a pair of fermions is equivalent to a boson, 
and a vortex with a fermion together behave as a vortex, 
but two vortices may fuse either to a boson or a fermion, 
giving rise to a multiply degenerate space for states with 
specified positions of vortices. This topological 
degeneracy first occurs for as many as four vortices, 
which together can fuse to a boson in two distinct ways – 
either fusing in pairs to two fermions or to two bosons: 

1 = (σ × σ) × (σ × σ) = 1 × 1 + ψ × ψ. (3) 

Such topological degeneracy, allowing for multiple 
quantum states representing an identical spatial 
configuration of four (or more) vortices, opens a 
possibility for non-Abelian braid statistics. Indeed, the 
braids in such a multi-dimensional subspace of identical 
configurations would require multi-dimensional (matrix) 
representation, which is inherently non-commutative. 

The physical realization of the non-Abelian anyon braid 
statistics is an exciting prospect on its own conceptual 
grounds. However, it has also received attention because 
of a proposal [6] to employ the topologically degenerate 
states and their braiding in the encoding and manipulation 
of quantum information which, due to the inherent 
protection of such qubits from any local disturbances 
(such as phonons or nuclear spins), would have immunity 
from decoherence. 
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Fig. 2. Same as Fig. 1, but for the composite fermions 
carrying 2p=4 magnetic flux quanta, corresponding to 
the filling factors ν = 1/5, 2/7, and 2/9, or (respectively) 
to q = 1, -2, and 2 composite fermion Landau levels 
(negative q means that the effective magnetic flux 2Q* 
is oriented opposite to the original flux 2Q). 

3. Pfaffian many-electron wave function 

The simplest many-electron wave-function emerging 
from the Ising conformal field theory is the so-called 
Pfaffian state [7] describing a particular form of electron 
correlation in a half-filled Landau level (ν=1/2): 
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where Pf(aij) denotes the Pfaffian of a skew-symmetric, 
even-dimensional matrix a. Writing it explicitly up to the 
normalization constant, 



( ) ( )12 34 56Pf ija a a a≡ …A  (5) 

where the operator A denotes anti-symmetrization over 
all indices. It is clear that ΨPf  describes a paired state of 
composite fermions (as ensured by the Pfaffian and 
Jastrow factors, respectively). 

The above Pfaffian wave-function represents a unique 
zero-energy ground state of a particular three-body model 
Hamiltonian HPf which in real space take the form of the 
three-body contact repulsion and inside a Landau level 
corresponds to a simple triplet pseudopotential with the 
sole non-vanishing (positive) coefficient at the minimum 
allowed three-body relative angular momentum, m=3. 
(This is reminiscent of Laughlin ν=1/3 state – a unique 
zero-energy ground state of the pair contact repulsion.)  

Quasiholes are created in the Pfaffian ground state in 
pairs for each additional flux quantum, and thus each of 
them carries a fractional charge e/4. They offer a 
particular example of non-Abelian anyons. To be precise, 
the space of configurations of 2K localized and distant 
quasiholes is 2K-1-fold degenerate, as can be predicted 
from the Ising fusion rules (2). 

These features are best illustrated in the exact energy 
spectra of the three-body repulsion HPf, as shown on two 
examples in Fig. 3. On a sphere, the Pfaffian ground state 
occurs at 2Q = 2N-3, as shown in frame (a) for N=14. 
Increasing flux by one, to 2Q = 2N-2, produces a pair of 
Pfaffian quasiholes which (not shown) results in a band 
of zero-energy states at L = N/2, N/2-2, …, consistent 
with the addition rule for two equal angular momenta. 
And inserting two flux quanta to the ground state, to 2Q = 
2N-1 (b), produces a large number of zero-energy states 
corresponding to four quasiholes, whose counting is not 
consistent with Abelian statistics, instead showing an 
additional topological (exchange) degeneracy. 
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Fig. 3. The low-energy spectra of the model three-body 
“contact repulsion” Hamiltonian HPf calculated by 
exact  diagonalization on a sphere at two different 
combinations of the fermion number N and magnetic 
flux 2Q, corresponding to (a) the Pfaffian ν=1/2 ground 
state, and (b) and two additional magnetic flux quanta 
inserted to such a ground state. The green labels in (b) 
give the degeneracy of zero-energy levels interpreted as 
four non-Abelian anyon quasiholes in the Pfaffian state 
of N=12 fermions, consistent with the prediction of the 
underlying Ising model. 
 
The interpretation of the Pfaffian wave-function (4) in 

terms of composite fermion pairing can be expressed 
rather intuitively in form of the following sequence of 
remarkable (though yet unproven) emergences: 

(i) As a result of Coulomb repulsion within a Landau 
level, each electron captures two vortices to become a 
composite fermion. 

(ii) Because the Landau level is half-filled, the effective 
magnetic field B* vanishes, and the composite fermions 

form a two-dimensional, spin-polarized (due to Zeeman 
effect governed by the original field B) Fermi sphere. 

(iii) In the absence of a single-particle energy gap, the 
residual interaction among the composite fermions may 
(depending on sign) cause instability of the Fermi sphere 
through the Cooper pairing of the composite fermions. 

(iv) The energy gap for breaking a pair in the resulting 
composite fermion superfluid causes incompressibility 
and fractional quantum Hall effect. 

4. Pfaffian state in a half-filled Landau level 

The key question is whether the Pfaffian state (with its 
exotic excitations)  provides a valid description of the 
Coulomb ground state. The fractional quantum Hall 
measurements at ν=1/2 (i.e., at half-filling of the lowest 
Landau level) are consistent with a compressible phase, 
confirmed to be the Fermi sea of composite fermions. 
This suggests that the ground state is different from the 
Pfaffian, most likely because the residual composite 
fermion interaction invoked in the above point (iii) is 
insufficient to induce a pairing transition in the Fermi sea 
of composite fermions. 

 

Fig. 4. The straightforward comparison of the Coulomb 
ground states in the half-filled second Landau level (ν = 
5/2) with the exact Pfaffian state, in the spherical 
geometry. Left: dependence of the squared overlaps on 
the electron number N = 6 to 20, for the layer widths w 

= 0 and 3λ (three magnetic lengths). Right: comparison 
of the pair-correlation functions g(r) for N = 20 and the 
flux 2Q = 2N - 3 = 37. Evidently, positive identification 
of the ν = 5/2 state with the Pfaffian state based solely 
on such simple analysis is highly problematic. 
 
However, the analogous experiments at ν=5/2 show 

clear signatures of quantized Hall effect [8]. This implies 
emergence of an incompressible ground state in the half-
filled second (n=1) Landau level – the counting ν=2+1/2 
reflecting the double spin degeneracy of the filled lowest 
(n=0) level. The crucial question then becomes whether 
the ν=5/2 quantum Hall state is equivalent to the Pfaffian 
state. Of course, the equivalence does not require that the 
actual Coulomb wave function be very close to the 
Pfaffian wave function (although that would definitely 
help). It would be sufficient to show adiabatic continuity 
between the two. This includes identity of such 
qualitative features as the spatial uniformity (non-
degeneracy) and full spin polarization of the ground state, 
an open excitation gap, the particular electric charge 
(±e/4) and braid properties (non-Abelian Ising anyons) of 
elementary quasiparticle excitations, or the number of 
distinct collective modes. Further topologically protected 
features (preserved under continuous deformation) may 
include certain dynamical degeneracies, following from 
the fact of pairing or from fusion rules.  



Note also that (strictly speaking) the polynomial form 
of the Pfaffian wave-function describes a many-electron 
state exclusively in the lowest Landau level. However, 
the problem of electrons in the second Landau level 
interacting with the Coulomb interaction can be mapped 
into that of electrons in the lowest Landau level with an 
effective interaction (using the concept of guiding-center 
positions), allowing an exact simulation of the 5/2 
problem in the lowest Landau level. 

A comparison of the Pfaffian wave-function with the 
actual  ν=5/2 state (the Coulomb ground state in the half-
filled second Landau level) is illustrated in Fig. 4, 
showing the overlaps (as a function of electron number 
N) and comparing the pair-correlation functions (for a 
fairly large system, with N = 20). 

5. Collective modes of the Pfaffian state 

An important aspect of the Pfaffian dynamics is that if!
composite fermions indeed formed a p-wave paired state 
at ν = 5/2 then, in analogy to superconductivity, one can 
expect two kinds of collective modes: magneto-rotons 
(known from the fractional quantum Hall states in the 
lowest Landau level and representing excitons of 
composite fermions) and pair-breakers (characteristic of 
any paired state and representing decomposition of 
composite fermion pairs into the unpaired constituents), 
also referred to as “unpaired composite fermions” or 
“neutral fermions”. The dispersion of both these modes 
has been studied recently by exact diagonalization [9,10], 
in sufficiently large systems to identify a number of 
significant features. The examples of energy spectra for 
an even and odd electron number N, each one featuring 
one of the modes, are shown in Fig. 5. 

When the low lying-states of the spectra obtained for 
different N and interpreted as either the magneto-roton or 
the pair-breaker collective excitations are plotted together 
as a function of the wave vector k (for the charge neutral 
modes moving along the great circles k = L/R is trivially 
connected to the sphere radius R≡1 and orbital angular 
momentum L), they fall on a pair of well-defined curves 
representing the pair of continuous energy dispersions. 

As is shown in Fig. 6, which combines the discrete data 
points for N = 11 to 19, the dispersions are very clear for 
the three-body Pfaffian Hamiltonian HPf (much less so 
for a pure Coulomb interaction HC, but rather similarly 
for its modified version H1 – both not shown). As it has 
been discussed in detail in the original paper [9], the two 
dispersions are markedly different at short wave vectors, 
but – remarkably – converge to the same value in the 
limit of large wave vector (kλ > 2). It turns out that this 
degeneracy is not accidental [11], instead being a crucial 
property of the universality class of paired composite 
fermion states represented by the Pfaffian wave function, 
and it will be explained in the following section. 

6. Pair-breaker addition energy 

The energy of the bottom of the pair-breaker dispersion 
shown in Fig. 6 defines the pair-breaker addition energy 
in the absence of other excitations, or the energy gap of 
the Pfaffian ground state for breaking composite fermion 
pairs. This gap is evidently non-zero, as required for an 
incompressible paired ground state. However, one of the 
remarkable consequences of the Ising fusion rules (2) is 
that a pair-breaker can be created at a zero energy cost in 
the presence of two widely separated quasiparticles. This 

nontrivial prediction has been tested [9] for different 
model Hamiltonians used in Fig. 5, and indeed it has been 
confirmed even for the pure Coulomb repulsion – despite 
the lack of clearly developed pair-breaker dispersion in 
Fig. 5 or (not shown) of a clearly developed band of two-
quasiparticle states for this realistic interaction. 
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Fig. 5. The energy spectra of an even and odd number 
of fermions, N = 16 and 15, on a sphere, at the Landau 
level degeneracy Nφ + 1 corresponding to the magnetic 
flux 2Q ≡ Nφ = 2N – 3, for three different Hamiltonians: 
HC is the Coulomb interaction in the second Landau 
level (n=1), H1 is the same Coulomb interaction but 
with an additional enhancement of the leading pair 
pseudopotential (at m=1) by the value δV1 = 0.04 e2/λ 
which maximizes the overlap of the ground state with 
the Pfaffian state, and HPf is the three-body contact 
repulsion for which the exact Pfaffian state is a unique 
zero-energy ground state. The low-lying states at the 
angular momenta L predicted for the magneto-roton 
and pair-breaking excitations are connected with lines, 
and their squared overlaps with the corresponding 
eigenstates of HPf are indicated. The emergence of the 
pair of dispersions is especially clear for HPf and H1. 
Graphs for N = 15 were originally presented in Ref. [9]. 
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Fig. 6. Continuous dispersions of the magneto-roton 
and pair-breaker (neutral fermion) collective excitations 
in the Pfaffian ground state, obtained by overlaying the 
discrete energy spectra of repulsive three-body Pfaffian 
Hamiltonian HPf for different fermion numbers N. k is 
the wave vector (proportional to angular momentum L). 
Similar graph was originally presented in Ref. [9]. 
 
The result of the calculation reported in [9] is replotted 

in Fig. 7, showing the independence of the 2-quasiparticle 
energy of the parity of the electron number N. It is worth 
mentioning is that the space of two quasiholes (formed at 
flux 2Q = 2N – 2) or two quasielectrons (at 2Q = 2N – 4) 
contains the states with all possible angular momenta L, 
corresponding to different average QH-QH or QE-QE 
distances d. However, as the connection between L and d 



is affected by the presence of the neutral fermion, a direct 
comparison of the 2QP and 2QP+NF energies (or 2QE 
and 2QE+NF energies) is impossible. Hence, the energy 
E shown in Fig. 7 represents an average over all space 
(all L-multiplets, weighted by 2L+1), thus including the 
configurations with both distant and nearby QHs (or QEs) 
alike. The lack of a significant parity effect in E(N) points 
therefore not only to the vanishing of the neutral fermion 
addition energy in the presence of distant quasiparticles, 
but also to a rather small even/odd splitting for the nearby 
quasiparticles. In terms of the underlying Ising conformal 
field theory, the apparently nearly vanishing gap E(N = 
odd) – E(N = even) represents the splitting of the pair of 
possible fusion channels “1” and “ψ” in equation (2), for 
a given spatial configuration of the two vortices “σ”. 
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Fig. 7. The comparison of the total energies of a pair of 
quasiparticles (quasielectrons or quasiholes) created by 
insertion or removal of a single flux quantum to/from a 
state at the magnetic flux 2Q = 2N - 3, with and without 
an additional neutral fermion (i.e., for an odd or even 
electron number N) for systems of different size and for 
different Hamiltonians of Fig. 5. The energies E have 
been averaged over all 2-quasielectron or 2-quasihole 
(and/or a neutral-fermion) states. The insensitivity of E 
to the parity of N, i.e., to the presence or absence of the 
quasparticles, is consistent with the expectation of zero 
neutral-fermion addition energy in the presence of two 
distant (non-Abelian) quasiparticles. After Ref. [9]. 

7. Bi-partite composite fermion model 

The above subtle features of the Pfaffian ground state 
and its excitation spectrum become almost self-evident in 
the recently proposed bi-partite composite fermion model 
[11,12]. It is straightforward to observe that the Pfaffian 
wave-function (4) can also be expressed as: 

( ) ( ) ( )
3 3

Pf
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i j i j i j

i j i j i j

z z w w z w
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Ψ = − − −∏ ∏ ∏A  (6) 

where the total number of electrons N have been divided 
into two equally (N/2) populated partitions “z” and “w” 
(as in the “331” bilayer wave-function [13]) and A is the 
anti-symmetrizing operator (under exchanges among all 
N fermions). The pairing nature of the above state clearly 
follows from the intra-partition correlations (defined by 
the Jastrow exponent “3”) being stronger than the inter-
partition ones (with exponent “1”). 

The above inter- or intra-partition correlations can be 
reproduced by an appropriate flux attachment procedure 
equivalent to a bi-partite composite fermion model with 
an effective magnetic field B* acting on each composite 
fermion partition separately. For example, for a Pfaffian 
ground state on a sphere, which results for 2Q = 2N-3 and 
an even N, each partition senses the effective magnetic 
flux 2Q* = 2Q – 2( N/2 – 1 ) – N/2 = N/2 – 1, consistent 
with its exact filling by N/2 particles. In the following we 
shall also carefully examine application of this model to 
the Pfaffian excitations. 

Let us allow for an arbitrary composite fermion number 
imbalance δ between the two partitions, thus introducing 
a pair of partition counts 

2

N
N

δ
±

±
=   (7) 

such that N+ + N– = N and N+ – N– = δ ≥ 0. The imbalance 
δ has the same parity as N, which can be either even or 
odd. The effective flux acting on each partition is 

( )*2 2 2 1Q Q N N± ±= − − −
∓

.  (8) 

Near the Landau level half-filling we also define an offset 
s from the flux corresponding to the Pfaffian ground state 

2 2 3Q N s= − + .  (9) 
In attempt to identify the low-energy configurations, let 
us now consider a problem of filling two partitions “+” 
and “–” (of degeneracy 2Q±+1) with N+ and N– composite 
fermions, respectively. Equation (8) can be conveniently 
rewritten in the following form 

*2 1Q N sη δ± ± ±≡ + − = ∓ ,  (10) 

expressing the quasiparticle numbers η in both partitions 
as a function of the offset s and the partition imbalance δ 
(and independently of the electron number N or flux 2Q). 
The convention is that positive and negative η count the 
quasiholes and quasielectrons, respectively. 

It has been conjectured [11] that the eigenstates of the 
many-electron Pfaffian Hamiltonian HPf  (and, possibly, 
also of a more realistic Hamiltonian yielding equivalent 
dynamics) are ordered in their interaction energy E with 
respect to the total cyclotron energy of the corresponding 
configuration of composite fermions, denoted by E*. In 
particular, the E = 0 states of HPf will be represented by 
the configurations with all composite fermions remaining 
in the lowest Landau levels in their respective partitions 
which, according to (10), requires 

sδ ≤ .  (11) 
Let us consider each value of s separately. The composite 
fermion energy E* will be measured in the units of the 
effective cyclotron energy !ωc* and counted from N/2, so 
that E = 0 corresponds to E* = 0. 

For s = 0, the zero-energy (E = 0) condition (10) admits 
a single partition imbalance δ = 0, for which η+ = η– = 0, 
implying that in each partition the lowest Landau level is 
exactly filled by N+ = N– = N/2 composite fermions. This 
yields a unique (Pfaffian) state at L = 0, which can be 
pictured as: 

 

For s = 1, the E = 0 states are possible for two distinct 
partition choices, corresponding to the imbalance values 
δ = 0 and 1. They all represent a pair of quasiholes in the 
Pfaffian ground state. For δ = 0, equation (10) yields η+ = 
η– = 1, and the quasiholes appear in different partitions, 
which is pictured as: 

 

For δ = 1, we get η+ = 0 and η– = 2, with both quasiholes 
appearing in the same (“–”) partition, pictured as:  

 

The possible values of angular momentum L result from 
addition rule for pairs of identical (composite) fermions, 
with the angular momenta of individual quasiholes given 
by ℓ± = Q±*. The result is L = LMAX – 2j, with j = 0, 1, … 



enumerates the pair states and LMAX = N/2 and (N–1)/2 
for δ = 0 and 1, respectively. 

As δ and N always have equal parities, the two kinds of 
E = 0 configurations (distinguished by the imbalance δ = 
0 or 1; for the particular offset s = 1, all representing two 
Pfaffian quasiholes) require different parities of N. Thus, 
for a fixed parity of N, there is only one kind of the E = 0 
configuration, with all states distinguished by an orbital 
quantum number L. This is consistent with the lack of 
topological degeneracy for two Pfaffian quasiholes. 

For s = 2, three distinct E = 0 configurations can have δ 
= 0, 1, or 2. All of them contain four Pfaffian quasiholes. 
Importantly, the two corresponding to the even δ arise for 
the same (even) parity of N. Let us look at them in detail. 

For δ = 0, from equation (10) we find η+ = η– = 2, with 
two quasiholes appearing in each partitions, pictured as: 

 

For δ = 2, we have η+ = 0 and η– = 4, with all quasiholes 
placed in the same (“–”) partition, pictured as: 

 

Again, the allowed total angular momenta L are can be 
understood by applying addition rules to four quasiholes 
with appropriate individual angular momenta ℓ = Q*. We 
will not list here the whole spectrum, but it is important 
to observe that in a sufficiently large system the small 
values of L corresponding to a large average quasihole 
separation will repeat for δ = 0 and 2. Hence, an identical 
spatial configuration of four quasiholes in a system with 
well-defined N and 2Q can be represented by two distinct 
quantum states – here distinguished by the imbalance δ. 
This is pleasingly consistent with the known emergence 
of the topological degeneracy in a system of four Pfaffian 
quasiholes, implied by the Ising fusion rules (2). 

The states corresponding to two or four quasielectrons 
can be identified analogously as the configurations with 
the minimum E* (except they no longer can have E* = 0). 
For example, for s = –1, the minimum composite fermion 
cyclotron energy E* = 2 can be achieved in two ways. 
For δ = 0, the two quasielectrons are evenly distributed 
between the partitions: 

 

For δ = 1, they both appear in the same partition: 

 

By adding two individual quasielectron angular momenta 
ℓ = Q* + 1 (note that each quasielectron is represented by 
a composite fermion in the second Landau level) one can 
readily predict the allowed values of L = LMAX – 2j with 
LMAX = N/2 and (N–3)/2 for δ = 0 and 1, respectively. In 
contrast to two-quasihole states defined unambiguously 
in the spectra of HPf at E = 0, the two-quasielectron states 
cannot be confidently identified in the N-electron spectra 
because they all have E > 0. Nonetheless, for odd N, the 
value of LMAX = (N–3)/2 indeed appears to agree with the 
spectra of HPf [9]. However, for even N, the value of 
LMAX = N/2 seems too high [9] (for an unknown reason). 

Let us now return to the previous case of s = 0 and look 
at the neutral modes. The corresponding states have E* = 
1; they are possible for two different partition choices.  

For δ = 0, they constitute the first excited band (above 
the E* = 0 Pfaffian ground state), in the form of an inter-
Landau-level exciton, with both the quasielectron and the 
quasihole placed in the same partition (either “– ” or “+”; 
their equivalence is guaranteed by anti-symmetrization), 
which can be pictured as: 

 

For δ = 1, the E* = 1 configurations constitute the lowest 
energy band, so one can use equation (10) to find η+ = –1 
and η– = 1. This also corresponds to an inter-Landau-level 
exciton, but one with the quasielectron and the quasihole 
placed in different partitions (“+” and “–”, respectively), 
which can be pictured as: 

 

The above pair of neutral modes with δ = 0 and 1 have 
been identified as the magneto-roton and the pair-breaker, 
and understood [11] as the “ordinary” and “topological” 
[14] composite fermion excitons, respectively. The latter 
name reflects the involved change in the electron number 
parity, and the resulting protection from self-annihilation 
at a constant N. The topological exciton has been further 
identified with the unpaired Majorana composite fermion, 
added to or removed from a paired Pfaffian state [11].  

The allowed angular momenta L of both excitons can 
also be predicted from angular momenta addition for the 
constituent (distinguishable) quasiparticles: L = 2, 3, …, 
N/2 for δ = 0 and L = 3/2, 5/2, …, N/2 for δ = 1 (except 
for the absence of L = 1 and L = 1/2 states which results 
in a non-trivial way from anti-symmetrization [11,15]). 

Having introduced the composite fermion excitons, we 
can now revisit the many-quasiparticle states at s ≠ 0. It 
can be readily observed that for a given total number of 
quasiparticles in the lowest-energy sector, η+ + η– = 2s, 
the transitions between different values of imbalance δ, 
corresponding to transferring quasiparticles between the 
two partitions, is realized by adding one kind of exciton 
and removing the other. In particular, the connection of 
four-quasiparticle configurations with the same parity of 
δ involves an even (but non-zero) number of topological 
excitons, which explains their topological distinction. 

The bi-partite composite fermion model gives natural 
insight [11] into several known properties of the Pfaffian 
state, some of which have not been previously explained: 
(i) the odd-even effect [16] for the energy of a half-filled 
second Landau level as a function of the electron number 
N – associated with the gap to add an unpaired composite 
fermion (topological exciton) at odd N; (ii) occurrence of 
two collective modes – understood as the ordinary and 
“trans” composite fermion excitons, and their degeneracy 
in the large wave-vector limit – corresponding to a large 
quasielectron-quasihole separation within the exciton; 
(iii) degeneracy of wide two-quasiparticle states that are 
different in the number of electrons N – connected by the 
quasiparticle transfer between the partitions; (iv) the Ising 
fusion rules – almost self-evident upon the identification 
of fields 1, ψ, and σ with the relevant composite fermion 
excitations: ordinary (cis-) exciton, topological (trans-) 
exciton, and a single quasiparticle, respectively. 

The bi-partite composite fermion model has also been 
generalized  [12] to other filling factors. For example, the 
states at ν = 2 + 4/7 = 18/7 and 2 + 3/5 = 13/5 have been 
accurately described by the bi-partite states with two and 



three filled Landau levels in each partition, respectively. 
Importantly, these fractions are connected by the particle-
hole conjugation (in the second Landau level) with ν = 2 
+ 3/7 = 17/7 and 2 + 2/5 = 12/5, at which the quantum 
Hall effect has been observed [17]. 

Convincing numerical evidence for the validity of the 
bi-partite composite fermion model has been discussed in 
detail previously [11,12]. Below, in Fig. 8, we present 
only a few examples of the energy spectra of HPf and HC, 
for the N-electron systems representing filling factors ν = 
1/2, 4/7, and 3/5 (corresponding to q = 1, 2, 3 filled 
Landau levels in each partition). Especially for HPf 
description of both the ground states and the excited 
magneto-roton bands is remarkably accurate, and the 
issue of adiabatic continuity between HPf the HC has 
been explored in Ref. [11]. 

 

Fig. 8. The energy spectra of N fermions on a sphere, 
with different interaction Hamiltonians: three-body 
contact repulsion (HPf) and Coulomb repulsion in the 
second Landau level (HC). The Coulomb energies are 
quoted in the units of e2/λ. In consecutive rows, the 
magnetic monopole strengths 2Q are chosen so as to 
yield q = 1, 2, 3 filled composite fermion Landau levels 
in the bi-partite model, corresponding to the indicated 
electron filling factors ν = 1/2 (Pfaffian), 4/7, and 3/5. 
The labels at the low-energy states give their overlaps 
with the bi-partite composite fermion wave functions, 
whose average energies are also shown with bars. The 
numbers above each column of data points indicate the 
space dimension at a given L. After Ref. [12]. 

8. Conclusion 

We have characterized the ν = 5/2 fractional quantum 
Hall state formed in a half-filled second Landau, which is 
believed to realize the so-called “Pfaffian” wave function 
with non-Abelian quasiparticles. We have described the 
excitations of the Coulomb spectrum and demonstrated a 
qualitative signature of pairing in this state: the existence 

of a well-defined mode of the “pair-breaking” excitations 
occurring for odd numbers of particles. We have further 
reviewed a recently developed intuitive model describing 
the particular form of pairing correlation in the partially 
filled second Landau level in terms of multiple partitions 
of non-interacting composite fermions. We have explored 
in detail the half-filled case (ν = 5/2). In contrast to the 
conventional composite fermion picture of the Pfaffian 
phase which involves the formation of a paired composite 
fermion superfluid driven by a residual  attraction in the 
absence of effective magnetic field, the bi-partite model 
employs division of free composite into partitions, in 
which they separately fill their respective Landau levels. 
As we have shown, this model explains in an elegant way 
several exotic properties of the Pfaffian phase, including 
the emergence of topological degeneracy of wide multi-
quasiparticle configurations (an essential requirement for 
non-Abelian braid statistics). 
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