16 research outputs found

    A new two-stage separation procedure for the IDMS based quantification of low Pd and Pt amounts in automotive exhaust emissions

    No full text
    A two step separation procedure for the quantification of Pd and Pt in automotive exhaust emissions using isotope dilution mass spectrometry was established using a combination of cation and anion exchange chemistry. AG 50 W-X12 was used as cation exchange resin and DGA as weakly basic anion exchange resin. This procedure enabled the effective separation of Pd and Pt from the matrix and from interfering elements. Additionally Pd and Pt were collected in separate chromatographic fractions, which increased the precision of the isotope ratio determination by separate measurement using a single collector sector field ICPMS. The analytical procedure was validated by analysing synthetically prepared samples and the certified reference materials BCR-723 (road dust) and IAEA-450 (algae). For all results, which of course are SI-traceable, complete uncertainty budgets were calculated yielding relative expanded uncertainties (k = 2) of around 1 % for analyte masses in the ng range. Procedure blanks of 55 pg Pd and 3 pg Pt were obtained. Detection limits were calculated as 12 pg for Pd and 7 pg for Pt. Additionally, Pd and Pt blank levels of different filter materials are presented as well as first results for automotive exhaust particles collected on cellulose filters.JRC.F.8-Sustainable Transpor

    Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2

    Get PDF
    Oceanic Anoxic Event 2 (OAE 2), occurring ∼94 million years ago, was one of the most extreme carbon cycle and climatic perturbations of the Phanerozoic Eon. It was typified by a rapid rise in atmospheric CO2, global warming, and marine anoxia, leading to the widespread devastation of marine ecosystems. However, the precise timing and extent to which oceanic anoxic conditions expanded during OAE 2 remains unresolved. We present a record of global ocean redox changes during OAE 2 using a combined geochemical and carbon cycle modeling approach. We utilize a continuous, high-resolution record of uranium isotopes in pelagic and platform carbonate sediments to quantify the global extent of seafloor anoxia during OAE 2. This dataset is then compared with a dynamic model of the coupled global carbon, phosphorus, and uranium cycles to test hypotheses for OAE 2 initiation. This unique approach highlights an intra-OAE complexity that has previously been underconstrained, characterized by two expansions of anoxia separated by an episode of globally significant reoxygenation coincident with the “Plenus Cold Event.” Each anoxic expansion event was likely driven by rapid atmospheric CO2 injections from multiphase Large Igneous Province activity

    Ocean redox conditions between the snowballs – Geochemical constraints from Arena Formation, East Greenland

    Get PDF
    The emergence of animal ecosystems is largely believed to have occurred in increasingly oxygenated oceans after the termination of the Sturtian and Marinoan glaciations. This transition has led to several hypotheses for the mechanism driving ocean oxygenation and animal evolution. One hypothesis is that enhanced weathering increased oceanic nutrient levels, primary productivity and organic carbon burial, and ultimately oxygenated the atmosphere and oceans. Another hypothesis suggests that an animal-driven reorganization of the marine biogeochemical cycles might have oxygenated the oceans. Through molybdenum (Mo), carbon (C), sulfur (S) isotopes and iron (Fe) speciation results from the Arena Fm, East Greenland, this study constrains ocean redox conditions during the Cryogenian, after the Sturtian deglaciation and before the major radiation of animals. Carbon and sulfur isotope stratigraphy is used to correlate the Arena Fm with other formations worldwide between the Sturtian and Marinoan glaciations (∼720–635 Ma). The lower part of the Arena Fm (∼25 m) consists of black shales deposited under locally euxinic conditions as evidenced by high proportions of highly reactive iron (Fe_(HR)/Fe_T > 0.38) and pyrite (Fe_(PY)/Fe_(HR) > 0.7). These black shales display small Mo enrichments (<3 ppm) and low Mo/TOC compared to overlying shales and Phanerozoic euxinic sediments. The maximum δ^(98)Mo value is observed in the basal Arena Fm (1.5‰). Many samples display lower δ^(98)Mo than typical oceanic input fluxes, which can be explained by Mo isotope fractionation from a marine Mo pool with δ^(98)Mo ∼ 1.3‰, similar to that inferred from other Cryogenic euxinic basins. The combination of low [Mo] and δ^(98)Mo suggests that widespread anoxia prevailed in the oceans at this time. Our data are consistent with most other studies from this time suggesting that ocean oxygenation was not linked to Snowball Earth deglaciation, but was delayed until animals effectively entered the scene

    The terrestrial uranium isotope cycle

    Get PDF
    Changing conditions on the Earth’s surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle1, 2, 3, 4, 5, 6, 7, 8. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high 238U/235U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have 238U/235U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component9, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages10, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years

    Uranium isotope fractionation during coprecipitation with aragonite and calcite

    No full text
    © 2016 Elsevier Ltd. Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~8.5 to study possible U isotope fractionation during incorporation into these minerals.Small but significant U isotope fractionation was observed in aragonite experiments at pH ~8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (\u3c0.13‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U
    corecore