54 research outputs found

    Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Get PDF
    A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyl)trifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl<sup>−1</sup>, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry. <br><br> The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m<sup>−3</sup> and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m<sup>−3</sup>. <br><br> In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m<sup>−3</sup> range in rural areas to more than 200 pg m<sup>−3</sup> in some samples from a suburban location

    Mechanics of the IL2RA Gene Activation Revealed by Modeling and Atomic Force Microscopy

    Get PDF
    Transcription implies recruitment of RNA polymerase II and transcription factors (TFs) by DNA melting near transcription start site (TSS). Combining atomic force microscopy and computer modeling, we investigate the structural and dynamical properties of the IL2RA promoter and identify an intrinsically negative supercoil in the PRRII region (containing Elf-1 and HMGA1 binding sites), located upstream of a curved DNA region encompassing TSS. Conformational changes, evidenced by time-lapse studies, result in the progressive positioning of curvature apex towards the TSS, likely facilitating local DNA melting. In vitro assays confirm specific binding of the General Transcription Factors (GTFs) TBP and TFIIB over TATA-TSS position, where an inhibitory nucleosome prevented preinitiation complex (PIC) formation and uncontrolled DNA melting. These findings represent a substantial advance showing, first, that the structural properties of the IL2RA promoter are encoded in the DNA sequence and second, that during the initiation process DNA conformation is dynamic and not static

    In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Get PDF
    International audiencePublished by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radio-carbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin , i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant , flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies

    Ploidy of Cell-Sorted Trophic and Cystic Forms of Pneumocystis carinii

    Get PDF
    Once regarded as an AIDS-defining illness, Pneumocystis pneumonia (PcP) is nowadays prevailing in immunocompromised HIV-negative individuals such as patients receiving immunosuppressive therapies or affected by primary immunodeficiency. Moreover, Pneumocystis clinical spectrum is broadening to non-severely-immunocompromised subjects who could be colonized by the fungus while remaining asymptomatic for PcP, thus being able to transmit the infection by airborne route to susceptible hosts. Although the taxonomical position of the Pneumocystis genus has been clarified, several aspects of its life cycle remain elusive such as its mode of proliferation within the alveolus or its ploidy level. As no long-term culture model exists to grow Pneumocystis organisms in vitro, an option was to use a model of immunosuppressed rat infected with Pneumocystis carinii and sort life cycle stage fractions using a high-through-put cytometer. Subsequently, ploidy levels of the P. carinii trophic and cystic form fractions were measured by flow cytometry. In the cystic form, eight contents of DNA were measured thus strengthening the fact that each mature cyst contains eight haploid spores. Following release, each spore evolves into a trophic form. The majority of the trophic form fraction was haploid in our study. Some less abundant trophic forms displayed two contents of DNA indicating that they could undergo (i) mating/fusion leading to a diploid status or (ii) asexual mitotic division or (iii) both. Even less abundant trophic forms with four contents of DNA were suggestive of mitotic divisions occurring following mating in diploid trophic forms. Of interest, was the presence of trophic forms with three contents of DNA, an unusual finding that could be related to asymmetrical mitotic divisions occurring in other fungal species to create genetic diversity at lower energetic expenses than mating. Overall, ploidy data of P. carinii life cycle stages shed new light on the complexity of its modes of proliferation

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Revisiting polymer statistical physics to account for the presence of long-range-correlated structural disorder in 2D DNA chains

    No full text
    We elaborate on a generalization of the 2D wormlike chain (WLC) model that accounts for the presence of long-range correlations (LRC) in the intrinsic curvature distribution of eukaryotic DNA. This model predicts some decrease of the DNA persistence length resulting from some large-scale intrinsic curvature induced by sequence-dependent persistent random distribution of local bending sites. When assisting exact analytical calculations by numerical DNA simulations, we show that the conjugated contributions of i) the thermal curvature fluctuations characterized by the “dynamic” persistence length ℓ p d = 2A , where A is the elastic bending modulus, and ii) the intrinsic LRC curvature disorder of amplitude σ o and Hurst exponent H > 1/2 , characterized by a “static” persistence length ℓ p H = A 1/2H σ o −1/H Γ(1/2H + 1), can be described by a continuum of generalized WLC (GWLC) models parametrized by the LRC exponent H. We use perturbation analysis to investigate the two limiting cases of weak static disorder (w H ≪ 1 and weak dynamical fluctuations (1/w H ≪ 1 , where w H = l p d /l p H is a dimensionless parameter. From a quantitative point of view, our study demonstrates that even for a small value of the LRC (H ≃ 0.6–0.8) static disorder amplitude σ o ∼ 10−2, as previously reported for genomic DNA, the decrease of the persistence length from the WLC prediction l p d can be very significant, up to twofold. The implications of these results on the first steps of compaction of DNA in eukaryotic cells are discussed
    corecore