88 research outputs found

    Bile salts in digestion and transport of lipids

    Get PDF
    Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems

    Getting the feel of food structure with atomic force microscopy

    Get PDF
    This article describes the progress in the development of the atomic force microscope as an imaging tool and a force transducer, with particular reference to applications in food science. Use as an imaging tool has matured and emphasis is placed on the novel insights gained from the use of the technique to study food macromolecules and food colloids, and the subsequent applications of this new knowledge in food science. Use as a force transducer is still emerging and greater emphasis is given on the methodology and analysis. Where available, applications of force measurements between molecules or between larger colloidal particles are discussed, where they have led to new insights or solved problems related to food science. The future prospects of the technique in imaging or through force measurements are discussed

    Surface characterization of human serum albumin and sodium perfluorooctanoate mixed solutions by pendant drop tensiometry and circular dichroism

    Get PDF
    The interfacial behavior of mixed human serum albumin (HSA)/sodium perfluorooctanoate (C8FONa) solutions is examined by using two experimental techniques, pendant drop tensiometry and circular dichroism spectroscopy. Through the analysis of the surface tension of the mixed solutions, surface competitive adsorption at the air-water interface between C8FONa and HSA is detected. The dynamic adsorption curves exhibit the distinct regimes in their time-dependent surface tension. The nature of these regimes is further analyzed in terms of the variation of the molecules surface areas. As a consequence, a compact and dense structure was formed where protein molecules were interconnected and overlapped. Thus, a reduction of the area occupied per molecule from 100 to 0.2 nm2 is interpreted as a gel-like structure at the surface. The presence of the surfactant seems to favor the formation of this interfacial structure. Finally, measurements of circular dichroism suggests a compaction of the protein due to the association with the surfactant given by an increase of α-helix structure in the complexes as compared to that of pure protein.Fil: Messina, Paula Verónica. Universidad de Santiago de Compostela; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Prieto, Gerardo. Universidad de Santiago de Compostela; EspañaFil: Dodero, Veronica Isabel. Universidad de Santiago de Compostela; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Cabrerizo-Vilchez, M.A.. Universidad de Granada. Facultad de Ciencias; EspañaFil: Maldonado Valderrama, J.. Universidad de Granada. Facultad de Ciencias; EspañaFil: Ruso, Juan M.. Universidad de Santiago de Compostela; EspañaFil: Sarmiento, Félix. Universidad de Santiago de Compostela; Españ

    Cloud condensation nuclei activation properties of Mediterranean pollen types considering organic chemical composition and surface tension effects

    Get PDF
    Wind-dispersed pollen grains emitted from vegetation are directly injected into the atmosphere being an important source of natural aerosols globally. These coarse particles of pollen can rupture into smaller particles, known as subpollen particles (SPPs), that may act as cloud condensation nuclei (CCN) and affect the climate. In this study, we characterize and investigate the ability of SPPs of 10 Mediterranean-climate pollen types to activate as CCN. A continuous flow CCN counter (CCNC) was used to measure the activation of size-selected (80, 100 and 200 nm dry mobility diameter) particles at different supersaturations (SS). Hygroscopicity parameter (κ) for each SPP type and size has been calculated using κ-Köhler theory. Organic chemical speciation and protein content has been determined to further characterize pollen solutions. Furthermore, the surface activity of SPPs has also been investigated by using pendant drop tensiometry. All studied SPP samples show critical supersaturation (SSCrit) values that are atmospherically relevant SS conditions. Hygroscopicity κ values are in the range characteristic of organic compounds (0.1–0.3). We found that organic speciation and protein content vary substantially among pollen types, with saccharides and fatty acids being the only organic compounds found in all pollen types. A clear relationship between SPP activation and its organic composition was not observed. This study also reveals that all SPPs investigated reduce the surface tension of water at high concentrations but at diluted concentrations (such as those of activation in the CCNC), the water surface tension value is a good approximation in Köhler theory. Overall, this analysis points out that pollen particles might be an important source of CCN in the atmosphere and should be considered in aerosol-cloud interactions processes.This work was supported by BioCloud project (RTI2018.101154.A.I00) funded by MCIN/AEI/10.13039/501100011033, FEDER “Una manera de hacer Europa” and NUCLEUS project (PID2021-128757OB-I00) funded by MCIN/AEI/10.13039/501100011033 and NextGenerationEU/PRTR. This work received support from the European Union's Horizon 2020 research and innovation program through projects ACTRIS.IMP (grant agreement No 871115) and ATMO_ACCESS (grant agreement No 101008004), by the Spanish Ministry of Science and Innovation through projects ELPIS (PID2020-120015RB-I00) and ACTRIS-España (CGL2017-90884REDT)). By the Junta de Andalucía Excellence, project ADPANE (P20-00136), AEROPRE (P-18-RT-3820) and by University of Granada Plan Propio through Visiting Scholars (PPVS2018-04), Singular Laboratory (LS2022-1) programs and Pre-Competitive Research Projects Pre-Greenmitigation3 (PP2022.PP34). Funding for open access charge, University of Granada/CBUA. Andrea Casans is funded by Spanish ministry of research and innovation under the predoctoral program FPI (PRE2019-090827) funded by MCIN/AEI/10.13039/501100011033, FSE “El FSE invierte en tu futuro”. Fernando Rejano is funded by Spanish ministry of universities through predoctoral grant FPU19/05340. Juan Andrés Casquero-Vera is funded by FJC2021-047873-I, MCIN/AEI/10.13039/501100011033 and NextGenerationEU/PRTR. Elisabeth Andrews is funded in part by NOAA cooperative agreements NA17OAR4320101. Thanks to the NOAA Global Monitoring Laboratory for the use of the CCN counter.Peer reviewe

    INFOGEST static in vitro simulation of gastrointestinal food digestion

    Get PDF
    peer-reviewedSupplementary information is available at http://dx.doi.org/10.1038/s41596-018-0119-1 or https://www.nature.com/articles/s41596-018-0119-1#Sec45.Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.COST action FA1005 INFOGEST (http://www.cost-infogest.eu/ ) is acknowledged for providing funding for travel, meetings and conferences (2011-2015). The French National Institute for Agricultural Research (INRA, www.inra.fr) is acknowledged for their continuous support of the INFOGEST network by organising and co-funding the International Conference on Food Digestion and workgroup meeting

    Lo glocal y el turismo. Nuevos paradigmas de interpretación.

    Get PDF
    El estudio del turismo se realiza desde múltiples escalas y enfoques, este libro aborda muchos temas que es necesario discutir desde diversas perspectivas; es el caso de la reflexión sobre la propia disciplina y sus conceptos, así como los asuntos específicos referidos al impacto territorial, los tipos de turismo, las cuestiones ambientales, el tema de la pobreza, la competitividad, las políticas públicas, el papel de las universidades, las áreas naturales protegidas, la sustentabilidad, la cultura, el desarrollo, la seguridad, todos temas centrales documentados y expuestos con originalidad y dominio del asunto. Lo multiescalar es básico para la comprensión del sistema turístico, sistema formado de procesos globales, regionales y locales. El eje de discusión del libro es lo glocal, esa interacción entre lo nacional y local con lo global
    corecore