1,228 research outputs found
Evaluating Signs of Determinants Using Single-Precision Arithmetic
We propose a method of evaluating signs of 2×2 and 3×3 determinants with b-bit integer entries using only b and (b + 1)-bit arithmetic, respectively. This algorithm has numerous applications in geometric computation and provides a general and practical approach to robustness. The algorithm has been implemented and compared with other exact computation methods
Origin of low-temperature magnetic ordering in Ga1-xMnxN
By employing highly sensitive millikelvin SQUID magnetometry, the magnitude
of the Curie temperature as a function of the Mn concentration x is determined
for thoroughly characterized Ga1-xMnxN. The interpretation of the results in
the frame of tight binding theory and of Monte Carlo simulations, allows us to
assign the spin interaction to ferromagnetic superexchange and to benchmark the
accuracy of state-of-the-art ab initio methods in predicting the magnetic
characteristics of dilute magnetic insulators.Comment: 4+ pages, 3 figure
Improved Implementation of Point Location in General Two-Dimensional Subdivisions
We present a major revamp of the point-location data structure for general
two-dimensional subdivisions via randomized incremental construction,
implemented in CGAL, the Computational Geometry Algorithms Library. We can now
guarantee that the constructed directed acyclic graph G is of linear size and
provides logarithmic query time. Via the construction of the Voronoi diagram
for a given point set S of size n, this also enables nearest-neighbor queries
in guaranteed O(log n) time. Another major innovation is the support of general
unbounded subdivisions as well as subdivisions of two-dimensional parametric
surfaces such as spheres, tori, cylinders. The implementation is exact,
complete, and general, i.e., it can also handle non-linear subdivisions. Like
the previous version, the data structure supports modifications of the
subdivision, such as insertions and deletions of edges, after the initial
preprocessing. A major challenge is to retain the expected O(n log n)
preprocessing time while providing the above (deterministic) space and
query-time guarantees. We describe an efficient preprocessing algorithm, which
explicitly verifies the length L of the longest query path in O(n log n) time.
However, instead of using L, our implementation is based on the depth D of G.
Although we prove that the worst case ratio of D and L is Theta(n/log n), we
conjecture, based on our experimental results, that this solution achieves
expected O(n log n) preprocessing time.Comment: 21 page
Histoire et modélisation des dynamiques socio-environnementales Holocènes des paysages fluviaux de la côte d'Azur
History and modelling of the socio-environmental dynamics of the fluvial landscapes of Côte-d'Azur (France) during the Holocene A research program was initiated in 2006 in order to reconstruct the evolution of the coastal hydrosystems of the rivers Argens (Var), Loup, Cagne and Malvan (Alpes-Maritimes) during the Holocene. The paper presents the archaeological and palaeoenvironmental data and the me thods used to apprehend the effects of the landscapes mobility over settlement patterns, and the impact of human occupation over the ecosystems.Un programme de recherches a été initié en 2006 afin de retracer l'évolution des hydrosystèmes côtiers de l'Argens (Var), du Lou p, de la Cagne et du Malvan (Alpes-Maritimes) au cours de l'Holocène. L'article présente les données archéologiques et paléoenvironnementales mobilisées et les méthodes mises en œuvre pour appréhender les répercussions de la mobilité de ces paysages sur le peuplement et l'impact de l'occupation humaine sur les écosystème
Load-Balancing for Parallel Delaunay Triangulations
Computing the Delaunay triangulation (DT) of a given point set in
is one of the fundamental operations in computational geometry.
Recently, Funke and Sanders (2017) presented a divide-and-conquer DT algorithm
that merges two partial triangulations by re-triangulating a small subset of
their vertices - the border vertices - and combining the three triangulations
efficiently via parallel hash table lookups. The input point division should
therefore yield roughly equal-sized partitions for good load-balancing and also
result in a small number of border vertices for fast merging. In this paper, we
present a novel divide-step based on partitioning the triangulation of a small
sample of the input points. In experiments on synthetic and real-world data
sets, we achieve nearly perfectly balanced partitions and small border
triangulations. This almost cuts running time in half compared to
non-data-sensitive division schemes on inputs exhibiting an exploitable
underlying structure.Comment: Short version submitted to EuroPar 201
A regulation-based classification system for marine protected areas: A response to Dudley et al. [9]
Dudley et al. [9] commented on our paper [11], arguing that the current IUCN objective-based categorization of protected areas, which is also used in marine protected areas (MPAs), should not be abandoned and replaced by the new regulation-based classification system [11]. Here we clarify that we do not advocate replacing the current IUCN categories, but highlight the benefits of using both the objective-based IUCN categories and the new regulation-based classification when applied to MPAs. With an increasing number of MPA types being implemented, most of them multiple-use areas zoned for various purposes, assessing ecological and socio-economic benefits is key for advancing conservation targets and policy objectives. Although the IUCN categories can be used both in terrestrial and marine systems, they were not designed to follow a gradient of impacts and there is often a mismatch between stated objectives and implemented regulations. The new regulation-based classification system addresses these problems by linking impacts of activities in marine systems with MPA and zone classes in a simple and globally applicable way. Applying both the IUCN categories and the regulation based classes will increase transparency when assessing marine conservation goals.ERA-Net BiodivERsA project "BUFFER Partially protected areas as buffers to increase the linked social ecological resilience"; national funders ANR (France); FCT (Portugal); FOR-MAS (Sweden); SEPA (Sweden); RCN (Norway); project BUFFER; Fernand Braudel IFER fellowship (Fondation Maison des Sciences de l'Homme); Fundacao para a Ciencia e a Tecnologia (FCT) [UID/MAR/04292/2013
Exchange bias in GeMn nanocolumns: the role of surface oxidation
We report on the exchange biasing of self-assembled ferromagnetic GeMn
nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of
this surface oxide shows a multiplet fine structure that is typical of the Mn2+
valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a
coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K)
in a magnetic field as low as 0.25 T. This exchange bias is attributed to the
interface coupling between the ferromagnetic nanocolumns and the
antiferromagnetic MnO-like caps. The effect enhancement is achieved by
depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure
Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures
We present a detailed quantitative magneto-optical imaging study of several
superconductor/ferromagnet hybrid structures, including Nb deposited on top of
thermomagnetically patterned NdFeB, and permalloy/niobium with erasable and
tailored magnetic landscapes imprinted in the permalloy layer. The
magneto-optical imaging data is complemented with and compared to scanning Hall
probe microscopy measurements. Comprehensive protocols have been developed for
calibrating, testing, and converting Faraday rotation data to magnetic field
maps. Applied to the acquired data, they reveal the comparatively weaker
magnetic response of the superconductor from the background of larger fields
and field gradients generated by the magnetic layer.Comment: 21 pages, including 2 pages of supplementary materia
Grit ingestion and size-related consumption of tubers by Graylag Geese
In herbivorous birds the processing rate of food is constrained by gizzard capacity. To enhance digestive processes, many species ingest grit to grind the food. Grit ingestion, however, may further limit the capacity of file gizzard. Graylag Geese (Anser anser) wintering in SW Spain fed mainly on Alkali Bulrush (Scirpus maritimus) tubers, showing a preference for small tubers. This preference may be due to a faster disintegration of small tubers than larger ones inside the gizzard. As larger tubers are likely coarser than smaller tubers, more grit would be necessary to process larger tubers. However, the ingestion of more grit to grind large tubers would be at the expense of ingesting additional tubers because of gizzard capacity limitations. Under these circumstances, there may be an inverse relationship between tuber size and amount of grit ingested to optimize food ingestion. Indeed, we found such a relationship. Grit facilitated the disintegration of tubers. This suggests that relying on some amount of grit to facilitate the grinding of food should outweigh the loss of gizzard capacity to the amount of food ingested.Peer Reviewe
Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns
We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films
grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures
(Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and
11 %. Their crystalline structure, morphology and composition have been
investigated by transmission electron microscopy (TEM), electron energy loss
spectroscopy and x-ray diffraction. In the whole range of growth temperatures
and Mn concentrations, we observed the formation of manganese rich
nanostructures embedded in a nearly pure germanium matrix. Growth temperature
mostly determines the structural properties of Mn-rich nanostructures. For low
growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal
decomposition resulting in the formation of vertical one-dimensional
nanostructures (nanocolumns). Moreover we show in this paper the influence of
growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns
size and density. For temperatures higher than 180deg C, we observed the
formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns
and nanoclusters coexist. Combining high resolution TEM and superconducting
quantum interference device magnetometry, we could evidence at least four
different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn
atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc
nanocolumns (120 K 400 K) and
(iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte
- …
