239 research outputs found
Plate-boundary deformation associated with the great Sumatra–Andaman earthquake
The Sumatra–Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M_w > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that ~30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M_w = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M_w = 8.7 Nias–Simeulue earthquake
The timing of strike-slip shear along the Ranong and Khlong Marui faults, Thailand
The timing of shear along many important strike-slip faults in Southeast Asia, such as the Ailao Shan-Red River, Mae Ping and Three Pagodas faults, is poorly understood. We present 40Ar/39Ar, U-Pb SHRIMP and microstructural data from the Ranong and Khlong Marui faults of Thailand to show that they experienced a major period of ductile dextral shear during the middle Eocene (48–40 Ma, centered on 44 Ma) which followed two phases of dextral shear along the Ranong Fault, before the Late Cretaceous (>81 Ma) and between the late Paleocene and early Eocene (59–49 Ma). Many of the sheared rocks were part of a pre-kinematic crystalline basement complex, which partially melted and was intruded by Late Cretaceous (81–71 Ma) and early Eocene (48 Ma) tin-bearing granites. Middle Eocene dextral shear at temperatures of ~300–500°C formed extensive mylonite belts through these rocks and was synchronous with granitoid vein emplacement. Dextral shear along the Ranong and Khlong Marui faults occurred at the same time as sinistral shear along the Mae Ping and Three Pagodas faults of northern Thailand, a result of India-Burma coupling in advance of India-Asia collision. In the late Eocene (<37 Ma) the Ranong and Khlong Marui faults were reactivated as curved sinistral branches of the Mae Ping and Three Pagodas faults, which were accommodating lateral extrusion during India-Asia collision and Himalayan orogenesis
Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system
Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 450 (2007): 407-410, doi:10.1038/nature06273.Continental erosion controls atmospheric carbon dioxide levels on geological timescales
through silicate weathering, riverine transport and subsequent burial of organic carbon
in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins
is however limited by the organic carbon load capacity of the sediments and organic
carbon oxidation in continental margins. At the global scale, previous studies have
suggested that about 70 per cent of riverine organic carbon is returned to the
atmosphere, such as in the Amazon basin. Here we present a comprehensive organic
carbon budget for the Himalayan erosional system, including source rocks, river
sediments and marine sediments buried in the Bengal fan. We show that organic carbon
export is controlled by sediment properties, and that oxidative loss is negligible during
transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the
organic carbon is recent organic matter captured during transport, which serves as a
net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the
Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon
buried in oceanic sediments. High erosion rates in the Himalayas generate high
sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the
observed extreme organic carbon burial efficiency. Active orogenic systems generate
enhanced physical erosion and the resulting organic carbon burial buffers atmospheric
carbon dioxide levels, thereby exerting a negative feedback on climate over geological
timescales
Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges
The Indo-Burman mountain rangesmarkthe boundary between the Indian and Eurasian plates, north of the Sumatra–Andaman subduction zone. Whether subduction still occurs along this subaerial section of the plate boundary, with 46mm/yr of highly oblique motion, is contentious. About 21mm/yr of shear motion is taken up along the Sagaing Fault, on the eastern margin of the deformation zone. It has been suggested that the remainder of the relative motion is taken up largely or entirely by horizontal strike-slip faulting and that subduction has stopped. Here we present GPS measurements of plate motions in Bangladesh, combined with measurements from Myanmar and northeast India, taking advantage of a more than 300 km subaerial accretionary prism spanning the Indo-Burman Ranges to the Ganges–Brahmaputra Delta. They reveal 13–17mm/yr of plate convergence on an active, shallowly dipping and locked megathrust fault. Most of the strike-slip motion occurs on a few steep faults, consistent with patterns of strain partitioning in subduction zones. Our results strongly suggest that subduction in this region is active, despite the highly oblique plate motion and thick sediments. We suggest that the presence of a locked megathrust plate boundary represents an underappreciated hazard in one of the most densely populated regions of the world
Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling
The 26 December 2004 Sumatra earthquake (Mw = 9.1) initiated around 30 km
depth and ruptured 1300 km of the Indo-Australian Sunda plate boundary. During
the Sumatra OBS (ocean bottom seismometer) survey, a wide angle seismic profile
was acquired across the epicentral region. A seismic velocity model was
obtained from combined travel time tomography and forward modeling. Together
with reflection seismic data from the SeaCause II cruise, the deep structure of
the source region of the great earthquake is revealed. Four to five kilometers
of sediments overlie the oceanic crust at the trench, and the subducting slab
can be imaged down to a depth of 35 km. We find a crystalline backstop 120 km
from the trench axis, below the fore arc basin. A high velocity zone at the
lower landward limit of the raycovered domain, at 22 km depth, marks a shallow
continental Moho, 170 km from the trench. The deep structure obtained from the
seismic data was used to construct a thermal model of the fore arc in order to
predict the limits of the seismogenic zone along the plate boundary fault.
Assuming 100C-150C as its updip limit, the seismogenic zone is predicted to
begin 530 km from the trench. The downdip limit of the 2004 rupture as inferred
from aftershocks is within the 350C 450C temperature range, but this limit is
210-250 km from the trench axis and is much deeper than the fore arc Moho. The
deeper part of the rupture occurred along the contact between the mantle wedge
and the downgoing plate
Pre-Pliocene Extension around the Gulf of California and the transfer of Baja California to the Pacific Plate
- …
