12 research outputs found
Overcoming High Energy Backgrounds at Pulsed Spallation Sources
Instrument backgrounds at neutron scattering facilities directly affect the
quality and the efficiency of the scientific measurements that users perform.
Part of the background at pulsed spallation neutron sources is caused by, and
time-correlated with, the emission of high energy particles when the proton
beam strikes the spallation target. This prompt pulse ultimately produces a
signal, which can be highly problematic for a subset of instruments and
measurements due to the time-correlated properties, and different to that from
reactor sources. Measurements of this background have been made at both SNS
(ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The
background levels were generally found to be low compared to natural
background. However, very low intensities of high-energy particles have been
found to be detrimental to instrument performance in some conditions. Given
that instrument performance is typically characterised by S/N, improvements in
backgrounds can both improve instrument performance whilst at the same time
delivering significant cost savings. A systematic holistic approach is
suggested in this contribution to increase the effectiveness of this.
Instrument performance should subsequently benefit.Comment: 12 pages, 8 figures. Proceedings of ICANS XXI (International
Collaboration on Advanced Neutron Sources), Mito, Japan. 201
Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences
The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009aâb; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported
by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on
18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based
researchers who signed it in the short time span from 20 September to 6 October 2016
Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion : Cr-doped silica and ferric oxide gel
Molecular hydrogen exists in two spin-rotation coupled states: parahydrogen and orthohydrogen. Due to the variation of energy with rotational level, the occupation of ortho- and parahydrogen states is temperature dependent, with parahydrogen being the dominant species at low temperatures. The equilibrium at 20 K (99.8% parahydrogen) can be reached by natural conversion only after a lengthy process. With the use of a suitable catalyst, this process can be shortened significantly. Two types of commercial catalysts currently being used for ortho- to parahydrogen conversion are: iron(iii) oxide (Fe2O3, IONEXŸ), and chromium(ii) oxide doped silica catalyst (CrO·SiO2, OXISORBŸ). We investigate the interaction of ortho- and parahydrogen with the surfaces of these ortho-para conversion catalysts using neutron vibrational spectroscopy. The catalytic surfaces have been characterized using X-ray absorption fine structure (XAFS) and X-ray/neutron pair distribution function measurements
Characterization of the radiation background at the Spallation Neutron Source
We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis He-4 detector, and a standard Nal photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden