95 research outputs found

    Clinical Validation of Computer-Assisted Navigation in Total Hip Arthroplasty

    Get PDF
    A CT-based navigation system is helpful to evaluate the reamer shaft and the impactor position/orientation during unilateral total hip arthroplasty (THA). The main objective of this study is to determine the accuracy of the Navitrack system by measuring the implant's true anteversion and inclination, based on pre- and postoperative CT scans (n = 9 patients). The secondary objective is to evaluate the clinical validity of measurements based on postop anteroposterior (AP) radiographs for determining the cup orientation. Postop CT-scan reconstructions and postop planar radiographs showed no significant differences in orientation compared to peroperative angles, suggesting a clinical validity of the system. Postoperative AP radiographs normally used in clinic are acceptable to determine the cup orientation, and small angular errors may originate from the patient position on the table

    Chimeric hepatitis B virus/hepatitis C virus envelope proteins elicit broadly neutralizing antibodies and constitute a potential bivalent prophylactic vaccine.

    Get PDF
    International audienceThe development of a prophylactic vaccine against hepatitis C virus (HCV) has become an important medical priority, because 3-4 million new HCV infections are thought to occur each year worldwide. Hepatitis B virus (HBV) is another major human pathogen, but infections with this virus can be prevented with a safe, efficient vaccine, based on the remarkable ability of the envelope protein (S) of this virus to self-assemble into highly immunogenic subviral particles. Chimeric HBV-HCV envelope proteins in which the N-terminal transmembrane domain of S was replaced with the transmembrane domain of the HCV envelope proteins (E1 or E2) were efficiently coassembled with the wild-type HBV S protein into subviral particles. These chimeric particles presented the full-length E1 and E2 proteins from a genotype 1a virus in an appropriate conformation for formation of the E1-E2 heterodimer. Produced in stably transduced Chinese hamster ovary cells and used to immunize New Zealand rabbits, these particles induced a strong specific antibody (Ab) response against the HCV and HBV envelope proteins in immunized animals. Sera containing anti-E1 or anti-E2 Abs elicited by these particles neutralized infections with HCV pseudoparticles and cell-cultured viruses derived from different heterologous 1a, 1b, 2a, and 3 strains. Moreover, the anti-hepatitis B surface response induced by these chimeric particles was equivalent to the response induced by a commercial HBV vaccine. Conclusions: Our results provide support for approaches based on the development of bivalent HBV-HCV prophylactic vaccine candidates potentially able to prevent initial infection with either of these two hepatotropic viruses. (HEPATOLOGY 2013)

    Heritability of susceptibility to Salmonella enteritidis infection in fowls and test of the role of the chromosome carrying the NRAMP1 gene

    Get PDF
    373 thirteen-week-old chicks issued from a commercial cross and 312 chickens from the L2 line were intravenously inoculated with 106 Salmonella enteritidis and the numbers of Salmonella in the spleen, liver and genital organs were assessed 3 days later. Heritabilities of the number of Salmonella were estimated at 0.02 ± 0.04 and 0.05 ± 0.05 in the liver; at 0.29 ± 0.07 and 0.10 ± 0.06 in the spleen; and at 0.16 ± 0.05 and 0.11 ± 0.08 in the genital organs, in the first and second experiments, respectively. The difference between the two experiments could result from sampling variations and from differences in the genetic structure of the two populations possibly including both heterosis and additive effects as well as their interaction in the first experiment. Genetic correlations between the number of bacteria in the genital organs and liver (0.56 ± 0.58 and 0.76 ± 0.32 in the first and second experiments, respectively) and spleen (0.37 ± 0.24 and 0.79 ± 0.23) were positive. Moreover a significant within-sire effect of VIL1, a marker gene for NRAMP1, was observed in 117 progeny resulting from 25 informative matings. These results indicate that there are genetic differences in the resistance to visceral infection by S. enteritidis in these commercial egg-laying flocks, and suggest that these differences are at least partly due to genetic polymorphism in the NRAMP1 region

    Kids' Outcomes And Long-term Abilities (KOALA): protocol for a prospective, longitudinal cohort study of mild traumatic brain injury in children 6 months to 6 years of age

    Get PDF
    Introduction: Mild traumatic brain injury (mTBI) is highly prevalent, especially in children under 6 years. However, little research focuses on the consequences of mTBI early in development. The objective of the Kids' Outcomes And Long-term Abilities (KOALA) study is to document the impact of early mTBI on children's motor, cognitive, social and behavioural functioning, as well as on quality of life, stress, sleep and brain integrity. Methods and analyses KOALA is a prospective, multicentre, longitudinal cohort study of children aged 6 months to 6 years at the time of injury/recruitment. Children who sustain mTBI (n=150) or an orthopaedic injury (n=75) will be recruited from three paediatric emergency departments (PEDs), and compared with typically developing children (community controls, n=75). A comprehensive battery of prognostic and outcome measures will be collected in the PED, at 10 days, 1, 3 and 12 months postinjury. Biological measures, including measures of brain structure and function (magnetic resonance imaging, MRI), stress (hair cortisol), sleep (actigraphy) and genetics (saliva), will complement direct testing of function using developmental and neuropsychological measures and parent questionnaires. Group comparisons and predictive models will test the a priori hypotheses that, compared with children from the community or with orthopaedic injuries, children with mTBI will (1) display more postconcussive symptoms and exhibit poorer motor, cognitive, social and behavioural functioning;(2) show evidence of altered brain structure and function, poorer sleep and higher levels of stress hormones. A combination of child, injury, socioenvironmental and psychobiological factors are expected to predict behaviour and quality of life at 1, 3 and 12 months postinjury. Ethics and dissemination The KOALA study is approved by the Sainte-Justine University Hospital, McGill University Health Centre and University of Calgary Conjoint Health Research Ethics Boards. Parents of participants will provide written consent. Dissemination will occur through peer-reviewed journals and an integrated knowledge translation plan

    Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes

    Get PDF
    The study of the interplay between speciation and hybridization is of primary importance in evolutionary biology. Octocorals are ecologically important species whose shallow phylogenetic relationships often remain to be studied. In the Mediterranean Sea, three congeneric octocorals can be observed in sympatry: Eunicella verrucosa, Eunicella cavolini and Eunicella singularis. They display morphological differences and E.singularis hosts photosynthetic Symbiodinium, contrary to the two other species. Two nuclear sequence markers were used to study speciation and gene flow between these species, through network analysis and Approximate Bayesian Computation (ABC). Shared sequences indicated the possibility of hybridization or incomplete lineage sorting. According to ABC, a scenario of gene flow through secondary contact was the best model to explain these results. At the intraspecific level, neither geographical nor ecological isolation corresponded to distinct genetic lineages in E.cavolini. These results are discussed in the light of the potential role of ecology and genetic incompatibilities in the persistence of species limits.French National Research Agency (ANR) program Adacni (ANR) [ANR-12-ADAP-0016]CNRSHubert Curien 'Tassili' program [12MDU853]CCMAR Strategic Plan from Fundacao para a Ciencia e a Tecnologia-FCT [PEst-C/MAR/LA0015/2011,FEDERinfo:eu-repo/semantics/publishedVersio

    A collaborative model to implement flexible, accessible and efficient oncogenetic services for hereditary breast and ovarian cancer : the C-MOnGene study

    Get PDF
    Medical genetic services are facing an unprecedented demand for counseling and testing for hereditary breast and ovarian cancer (HBOC) in a context of limited resources. To help resolve this issue, a collaborative oncogenetic model was recently developed and implemented at the CHU de Québec-Université Laval; Quebec; Canada. Here, we present the protocol of the C-MOnGene (Collaborative Model in OncoGenetics) study, funded to examine the context in which the model was implemented and document the lessons that can be learned to optimize the delivery of oncogenetic services. Within three years of implementation, the model allowed researchers to double the annual number of patients seen in genetic counseling. The average number of days between genetic counseling and disclosure of test results significantly decreased. Group counseling sessions improved participants' understanding of breast cancer risk and increased knowledge of breast cancer and genetics and a large majority of them reported to be overwhelmingly satisfied with the process. These quality and performance indicators suggest this oncogenetic model offers a flexible, patient-centered and efficient genetic counseling and testing for HBOC. By identifying the critical facilitating factors and barriers, our study will provide an evidence base for organizations interested in transitioning to an oncogenetic model integrated into oncology care; including teams that are not specialized but are trained in genetics

    Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma

    Get PDF
    [Excerpt] Multiple myeloma (MM) is the third most common hematological malignancy, after Non-Hodgkin Lymphoma and Leukemia. MM is generally preceded by Monoclonal Gammopathy of Undetermined Significance (MGUS) [1], and epidemiological studies have identified older age, male gender, family history, and MGUS as risk factors for developing MM [2]. The somatic mutational landscape of sporadic MM has been increasingly investigated, aiming to identify recurrent genetic events involved in myelomagenesis. Whole exome and whole genome sequencing studies have shown that MM is a genetically heterogeneous disease that evolves through accumulation of both clonal and subclonal driver mutations [3] and identified recurrently somatically mutated genes, including KRAS, NRAS, FAM46C, TP53, DIS3, BRAF, TRAF3, CYLD, RB1 and PRDM1 [3,4,5]. Despite the fact that family-based studies have provided data consistent with an inherited genetic susceptibility to MM compatible with Mendelian transmission [6], the molecular basis of inherited MM predisposition is only partly understood. Genome-Wide Association (GWAS) studies have identified and validated 23 loci significantly associated with an increased risk of developing MM that explain ~16% of heritability [7] and only a subset of familial cases are thought to have a polygenic background [8]. Recent studies have identified rare germline variants predisposing to MM in KDM1A [9], ARID1A and USP45 [10], and the implementation of next-generation sequencing technology will allow the characterization of more such rare variants. [...]French National Cancer Institute (INCA) and the Fondation Française pour la Recherche contre le Myélome et les Gammapathies (FFMRG), the Intergroupe Francophone du Myélome (IFM), NCI R01 NCI CA167824 and a generous donation from Matthew Bell. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the Association des Malades du Myélome Multiple (AF3M) for their continued support and participation. Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organizatio

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore