9 research outputs found

    Rat protein tyrosine phosphatase η physically interacts with the PDZ domains of syntenin

    Get PDF
    AbstractThe tyrosine phosphatase r-PTPη is able to suppress the malignant phenotype of rat thyroid tumorigenic cell lines. To identify r-PTPη interacting proteins, a yeast two-hybrid screening was performed and an insert corresponding to the full-length syntenin cDNA was isolated. It encodes a protein containing two PDZ domains that mediates the binding of syntenin to proteins such as syndecan, proTGF-α, β-ephrins and neurofascin. We show that r-PTPη is able to interact with syntenin also in mammalian cells, and although syntenin is a tyrosine-phosphorylated protein it is not a substrate of r-PTPη. The integrity of both PDZ domains of syntenin and the carboxy-terminal region of r-PTPη are required for the interaction between syntenin and r-PTPη

    The cAMP-HMGA1-RBP4 system: a novel biochemical pathway for modulating glucose homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously showed that mice lacking the high mobility group A1 gene (<it>Hmga1</it>-knockout mice) developed a type 2-like diabetic phenotype, in which cell-surface insulin receptors were dramatically reduced (below 10% of those in the controls) in the major targets of insulin action, and glucose intolerance was associated with increased peripheral insulin sensitivity. This particular phenotype supports the existence of compensatory mechanisms of insulin resistance that promote glucose uptake and disposal in peripheral tissues by either insulin-dependent or insulin-independent mechanisms. We explored the role of these mechanisms in the regulation of glucose homeostasis by studying the <it>Hmga1</it>-knockout mouse model. Also, the hypothesis that increased insulin sensitivity in <it>Hmga1</it>-deficient mice could be related to the deficit of an insulin resistance factor is discussed.</p> <p>Results</p> <p>We first show that HMGA1 is needed for basal and cAMP-induced retinol-binding protein 4 (<it>RBP4</it>) gene and protein expression in living cells of both human and mouse origin. Then, by employing the <it>Hmga1</it>-knockout mouse model, we provide evidence for the identification of a novel biochemical pathway involving HMGA1 and the RBP4, whose activation by the cAMP-signaling pathway may play an essential role for maintaining glucose metabolism homeostasis <it>in vivo</it>, in certain adverse metabolic conditions in which insulin action is precluded. In comparative studies of normal and mutant mice, glucagon administration caused a considerable upregulation of HMGA1 and RBP4 expression both at the mRNA and protein level in wild-type animals. Conversely, in <it>Hmga1</it>-knockout mice, basal and glucagon-mediated expression of RBP4 was severely attenuated and correlated inversely with increased <it>Glut4 </it>mRNA and protein abundance in skeletal muscle and fat, in which the activation state of the protein kinase Akt, an important downstream mediator of the metabolic effects of insulin on Glut4 translocation and carbohydrate metabolism, was simultaneously increased.</p> <p>Conclusion</p> <p>These results indicate that HMGA1 is an important modulator of <it>RBP4 </it>gene expression <it>in vivo</it>. Further, they provide evidence for the identification of a novel biochemical pathway involving the cAMP-HMGA1-RBP4 system, whose activation may play a role in glucose homeostasis in both rodents and humans. Elucidating these mechanisms has importance for both fundamental biology and therapeutic implications.</p
    corecore