37 research outputs found

    Effects of dietary protein and fat level and rapeseed oil on growth and tissue fatty acid composition and metabolism in Atlantic salmon (Salmo salar L.) reared at low water temperatures

    Get PDF
    A 12 week feeding trial was conducted to elucidate the interactive effects of dietary fat and protein contents and oil source on growth, fatty acid composition, protein retention efficiency (PRE) and β-oxidation activity of muscle and liver in Atlantic salmon (Salmo salar L.) at low water temperatures (4.2 oC). Triplicate groups of Atlantic salmon (initial weight 1168 g) were fed six isoenergetic diets formulated to provide either 390 g kg-1 protein and 320 g kg-1 fat (high protein (HP) diets) or 340 g kg-1 protein and 360 g kg-1 fat (low protein (LP) diets); within each dietary protein/fat level crude RO comprised 0, 30 or 60% (R0, R30, R60, respectively) of the added oil. After 12 weeks the overall growth and FCR were very good for all treatments (TGC; 4.76 (±0.23), FCR; 0.85 (±0.02)). Significant effects were shown due to oil source on SGR and TGC only. The liver and muscle FA compositions were highly affected by the graded inclusion of RO. The PRE was significantly affected by the dietary protein level, while no significant effects were shown in total β-oxidation capacity of liver and muscle. The results of this study suggest that more sustainable, lower protein diets with moderate RO inclusion can be used in Atlantic salmon culture at low water temperatures with no negative effects on growth and feed conversion, no major detrimental effects on lipid and fatty acid metabolism and a positive effect on protein sparing

    Lipid and fatty acid composition, and persistent organic pollutant levels in tissues of migrating Atlantic bluefin tuna (Thunnus thynnus, L.) broodstock

    Get PDF
    Lipid class, fatty acid and POP levels were measured in migrating Atlantic bluefin tuna (ABT) tissues caught off the Barbate coast, Spain. Tissue lipids were largely characterized by triacylglycerol, reflecting large energy reserves accumulated prior to reproductive migration. Fatty acid compositions of muscle, liver and adipose exhibited similar profiles, whereas gonads showed a higher affinity for docosahex- aenoic acid. Tissue POP concentrations correlated positively with percentage triacylglycerol and nega- tively with polar lipids. Highest POP concentrations were in adipose and lowest in gonads, reflecting lipid content. DL-PCBs contributed most to total PCDD/F þ DL-PCB levels, with mono-ortho concentrations higher in tissues, whereas non-ortho PCBs contributed greater WHO-TEQs due to differences in TEFs. PBDE47 was the most prominent BDE congener in tissues, probably through biotransformation of BDE99 and other higher brominated congeners. The perceived POP risk from ABT consumption should be balanced by the well-established beneficial effects on human health of omega-3 fatty acids

    Replacement of Marine Fish Oil with de novo Omega-3 Oils from Transgenic Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.)

    Get PDF
    Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) are essential components of the diet of all vertebrates and. The major dietary source of n-3 LC-PUFA for humans has been fish and seafood but, paradoxically, farmed fish are also reliant on marine fisheries for fish meal and fish oil (FO), traditionally major ingredients of aquafeeds. Currently, the only sustainable alternatives to FO are vegetable oils, which are rich in C18 PUFA, but devoid of the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) abundant in FO. Two new n-3 LC-PUFA sources obtained from genetically modified (GM) Camelina sativa containing either EPA alone (ECO) or EPA and DHA (DCO) were compared to FO and wild-type camelina oil (WCO) in juvenile sea bream. Neither ECO nor DCO had any detrimental effects on fish performance, although final weight of ECO-fed fish (117 g) was slightly lower than that of FO- and DCO-fed fish (130 and 127 g, respectively). Inclusion of the GM-derived oils enhanced the n-3 LC-PUFA content in fish tissues compared to WCO, although limited biosynthesis was observed indicating accumulation of dietary fatty acids. The expression of genes involved in several lipid metabolic processes, as well as fish health and immune response, in both liver and anterior intestine were altered in fish fed the GM-derived oils. This showed a similar pattern to that observed in WCO-fed fish reflecting the hybrid fatty acid profile of the new oils. Overall the data indicated that the GM-derived oils could be suitable alternatives to dietary FO in sea bream

    Seasonal changes of commercial traits, proximate and fatty acid compositions of the scallop Flexopecten glaber from the Mediterranean Sea (Southern Italy)

    Get PDF
    This study provides information on biological (gonadosomatic index), commercial quality (condition index and meat yield) and biochemical aspects (proximate composition, fatty acids) of the soft tissues of Flexopecten glaber reared in suspended cages in the Ionian Sea. The results showed that condition index (CI) and meat yield (MY) peaked in December (60 and 30%, respectively) and in April, May and June (from 53 to 60% for CI and from 34 to 36% for MY). Gonadosomatic index showed three main peaks in winter, spring and summer months. Contents of protein 8.18–11.9 g/100 g), lipid (0,.78–1.18 g/100 g) and carbohydrate (1.19–3.30 g/100 g) varied significantly during the study period. Saturated fatty acids was the dominant group, except in December when polyunsaturated fatty acids showed the highest proportion (43% of total FAs). Fatty acids of the n3 group were dominant with docosahexaenoic and eicosapentaenoic acids. Highest n3/n6 ratios were recorded in spring-summer specimens, with values > of 5. The results showed a better nutritional quality of scallops in May, July and December
    corecore