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Abstract 26 

A 12 week feeding trial was conducted to elucidate the interactive effects of dietary 27 

fat and protein contents and oil source on growth, fatty acid composition, protein 28 

retention efficiency (PRE) and β-oxidation activity of muscle and liver in Atlantic 29 

salmon (Salmo salar L.) at low water temperatures (4.2 oC). Triplicate groups of 30 

Atlantic salmon (initial weight 1168 g) were fed six isoenergetic diets formulated to 31 

provide either 390 g kg-1 protein and 320 g kg-1 fat (high protein (HP) diets) or 340 g 32 

kg-1 protein and 360 g kg-1 fat (low protein (LP) diets); within each dietary protein/fat 33 

level crude RO comprised 0, 30 or 60% (R0, R30, R60, respectively) of the added oil. 34 

After 12 weeks the overall growth and FCR were very good for all treatments (TGC; 35 

4.76 (±0.23), FCR; 0.85 (±0.02)). Significant effects were shown due to oil source on 36 

SGR and TGC only. The liver and muscle FA compositions were highly affected by 37 

the graded inclusion of RO. The PRE was significantly affected by the dietary protein 38 

level, while no significant effects were shown in total β-oxidation capacity of liver 39 

and muscle. The results of this study suggest that more sustainable, lower protein diets 40 

with moderate RO inclusion can be used in Atlantic salmon culture at low water 41 

temperatures with no negative effects on growth and feed conversion, no major 42 

detrimental effects on lipid and fatty acid metabolism and a positive effect on protein 43 

sparing. 44 

 45 

KEYWORDS: Rapeseed oil; Dietary protein / lipid ratio; Polyunsaturated fatty acids 46 

(PUFA); β-Oxidation; Protein sparing effect; Atlantic salmon 47 

 48 

 49 
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 Introduction 50 

Traditionally, marine fish meal (FM) and fish oil (FO) have been the major 51 

protein and oil sources in aquafeeds, especially for carnivorous species such as 52 

Atlantic salmon, mainly due to their high nutritional value (Sargent & Tacon, 1999). 53 

The aquaculture sector is at present the biggest consumer of FM and FO, consuming 54 

in 2002 about 2.685 mmt of FM and 0.666 mmt of FO, that represents 42.1 and 78.7% 55 

of the total global FM and FO production, respectively (Tacon, 2004). Moreover, the 56 

largest proportion of the total FM and FO used in aquafeeds in 2002, 26.9 and 52.4%, 57 

respectively, was consumed by salmonids (Tacon, 2004).  58 

Clearly, there is a strong dependence on FM and FO for the salmon industry. 59 

This could be risky and even harmful to the viability, growth and profitability of the 60 

sector, as it has been estimated that the resources of wild feed grade fisheries will 61 

remain static (Pike & Barlow, 2003), while the demand for these commodities by the 62 

aquaculture feed industry will grow significantly in the next decade (Sargent & 63 

Tacon, 1999; Tidwell & Allan, 2002; Tacon, 2004). Moreover, other issues arise, that 64 

make the use of FM and FO for aquafeeds problematic; for instance, FM and FO can 65 

contain organic pollutants (e.g. dioxins, PCBs, PBDEs), that are deposited in the fish 66 

and, thereby, may limit their inclusion (SCAN, 2000; SCF, 2001; Jacobs et al., 2002a; 67 

Jacobs et al., 2002b; Bell et al., 2005). Hence, there is a growing, pressing need for 68 

sustainable alternatives to FM and FO and for the reduction of the dependence of FM 69 

and FO for fish feeds.  70 

Vegetable oils (VO) represent sustainable alternatives to FO. However, the 71 

replacement of FO with VO can be challenging, as VO lack the n-3 highly unsaturated 72 

fatty acids (HUFA) which are abundant in FO; the n-3 HUFA, especially 73 

eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic acids (22:6n-3; DHA), are 74 
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essential for optimal growth and development in salmon (Sargent et al., 2002). In 75 

addition, the fatty acid (FA) composition of the fish tissues reflects the FA 76 

composition of the diets; hence, replacement of FO with VO results in reductions of 77 

EPA, DHA and the n-3/n-6 FA ratio, with a direct effect on the nutritional quality of 78 

the end product (Bell et al., 2001; Rosenlund et al., 2001; Bell et al., 2003a). This is 79 

important for the human consumer as EPA and DHA and the n-3/n-6 FA ratio have 80 

been associated with numerous beneficial effects on human health and any reduction 81 

in farmed fish would be undesirable (De Deckere et al., 1998; Horrocks & Yeo, 1999; 82 

Simopoulos, 1999; Hunter & Roberts, 2000; ISSFAL, 2000; Simopoulos, 2003).  83 

RO is considered to be a good sustainable substitute for FO. It has been used 84 

successfully in a number of previous studies with salmon (Bell et al., 2001; 85 

Torstensen et al., 2004a; Torstensen et al., 2004b). Moreover, it has a high availability 86 

(FAO, 2005), as it is the third largest production of VO in the world, after soy and 87 

palm oil (U. S. Department for Agriculture, 2005).  88 

Currently, salmon diets contain high proportions of protein, most of it 89 

provided by FM. However, it is crucial for the aquafeed industry to optimise the use 90 

of feed protein and to improve the protein utilisation in the salmon diets. This would 91 

allow less dependence on FM, reduce the cost of the feed and also reduce the 92 

environmental impact through waste output from salmon culture(Halver & Hardy, 93 

2002). Salmon can utilize lipids efficiently, therefore the use of high lipid diets in 94 

salmon allows protein sparing (Froyland et al., 1998; Hillestad et al., 1998; Bendiksen 95 

et al., 2003) and subsequently improved growth. 96 

Numerous studies have investigated the replacement of FO with RO, and/or 97 

other VO in diets of salmonids (Bell et al., 2001; Rosenlund et al., 2001; Tocher et 98 

al., 2001; Bell et al., 2002; Bell et al., 2003b; Bell et al., 2003a; Bendiksen et al., 99 
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2003; Ng et al., 2004; Tocher et al., 2004; Torstensen et al., 2004a; Torstensen et al., 100 

2004b; Fonseca-Madrigal et al., 2005) and also the use of low protein / high lipid 101 

diets (Einen & Roem, 1997; Bendiksen et al., 2003; Azevedo et al., 2004; Solberg, 102 

2004). However, most of these studies were focusing either on the oil source or on the 103 

dietary protein/fat level. In addition, very few were conducted at the very low 104 

temperatures used in the present study that are common in sites located in high 105 

latitudes. It is known that temperature plays a significant role in FA metabolism and, 106 

in general, in fish nutrition, physiology and growth (Torstensen et al., 2000; 107 

Bendiksen & Jobling, 2003; Bendiksen et al., 2003; Guderley, 2004; Ng et al., 2004; 108 

Tocher et al., 2004). In particular, the important role of n-3 HUFAs in low 109 

temperature adaptation has been highlighted (Hochachka & Somero, 2002).  110 

The aim of this trial was to elucidate the interactive effects of dietary fat and 111 

protein contents and oil source on growth, whole body proximate composition, fatty 112 

acid composition and β-oxidation activity of liver and muscle in Atlantic salmon at 113 

low water temperatures.  114 

Materials and methods 115 

Fish and facilities 116 

Atlantic salmon (Salmo salar) of the NLA strain (03G) with overall mean 117 

weight of 1168g were randomly distributed into 18 sea cages of 125 m3 (5x5x5m) 118 

with 137 fish in each cage. Prior to the trial the fish were stocked in two trial cages 119 

and acclimatised for six weeks. The fish were subjected to artificial light (LD24:0) 120 

from the middle of December at decreasing ambient temperature (range; 4-6oC). 121 

During this holding period the fish were fed commercial pelleted feed (BioOptimal 122 

CPK, 9mm, BioMar AS, Norway) in accordance with the manufacturer's 123 
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recommendations. During the experimental period (February –April 2004) the fish 124 

were subjected to artificial light (LD24:0), provided from sub-merged light (one 125 

400W bulb shared by four cages). The temperature varied from 2.8 °C to 7.3 °C with 126 

an average temperature of 4.2 ± 0.8 °C. Salinity was 34.0 ± 0.8 g L-1. Fish were bulk 127 

weighed at the start of the trial, after 6 weeks and at the end of the trial (12 weeks). 128 

Mortalities were recorded and dead fish were removed daily.  129 

Experimental diets 130 

Six isoenergetic, practical-type extruded diets (9 mm) were formulated 131 

(BioMar TechCentre, Brande, DK) to provide either 390 g kg-1 protein and 320 g kg-1 132 

fat (high protein (HP) diets) or 340 g kg-1 protein and 360 g kg-1 fat (low protein (LP) 133 

diets). Within each dietary fat and protein level crude RO comprised 0, 30 or 60% 134 

(R0, R30, R60) of the total added oil, the remainder of which was FO (Table 1). The 135 

diets were formulated to meet all the known nutritional requirements of salmonid fish 136 

(NRC, 1993). The proximate composition of the experimental diets is shown in Table 137 

1 and the fatty acid compositions are shown in Table 2. Each feed was fed daily to 138 

satiation by hand to triplicate groups (cages) of fish. When sea temperature was below 139 

5°C the fish were fed to satiation once a day. Above 5°C, two daily meals were 140 

provided with a minimum of 4 hours between the meals. In order to facilitate accurate 141 

calculations of feed intake and FCR, feed wastage was collected using a lift-up system 142 

and calculated on a daily basis.  143 

Sampling procedure 144 

Samples were taken from all diets and stored at -20 °C until analyzed. At the 145 

start of the experiment an initial sample of six fish was taken to determine baseline 146 

values of whole body proximate composition. At the end of the trial (12th week) three 147 
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fish per cage were sampled at random from the population in each cage for lipid and 148 

fatty acid composition and β-oxidation activities of liver and muscle. Another sample 149 

of three fish per cage was used for whole body proximate composition. Fish were 150 

killed with a sharp blow to the head and samples of liver were dissected and 151 

immediately placed in liquid nitrogen. Viscera, liver and heart weights from four fish 152 

per cage were recorded for measurement of viscero-somatic index (VSI), hepato-153 

somatic index (HSI) and cardio-somatic index (CSI), respectively. For whole body 154 

analysis fish were minced and homogenate sub-samples of each fish were obtained. 155 

Initial whole body samples were pooled in pairs so three samples were finally 156 

obtained (n = 3) while 12 week whole body samples were pooled so there was one 157 

sample per cage. A muscle sample, representative of the edible portion, was obtained 158 

by cutting a steak between the dorsal and ventral fins (NQC). This section was then 159 

skinned, de-boned and homogenized. All samples were then stored at -20 °C until 160 

analyzed. 161 

Proximate analysis 162 

Proximate analysis was conducted to determine the nutrient composition of 163 

diets and whole body samples. Moisture was determined by thermal drying to 164 

constant weight in an oven at 110 °C for 24h. Crude protein contents were determined 165 

by Kjeldahl analyses (nitrogen x 6.25, Kjeltec Autoanalyser, Tecator). Crude fat was 166 

determined in diets by acid hydrolysis using a Soxtec System 1047 hydrolysing unit 167 

(Tecator Application note 92/87) followed by exhaustive Soxhlet extraction using 168 

petroleum ether (40-60°C, BP) on a Soxtec System HT6 (Tecator application note 169 

67/83). Crude fat in whole body samples was determined by the above procedure but 170 

without the acid hydrolysis.  Ash content was determined by dry ashing in porcelain 171 
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crucibles in a muffle furnace at 600 °C overnight. All methods are based on those 172 

described in AOAC (1995) and modified as described by Bell et al (2001). 173 

Lipid extraction and fatty acid analyses 174 

Total lipids of flesh, livers and diet samples were extracted by homogenization 175 

in 20 volumes of chloroform/methanol (2:1, v/v) containing butylated hydroxytoluene 176 

(0.01% w/w, BHT) as antioxidant, according to Folch et al. (1957). Fatty acid methyl 177 

esters (FAME) were prepared from total lipid by acid-catalyzed transesterification 178 

using 2ml of 1% H2SO4 in methanol plus 1 ml toluene as described by Christie (1982) 179 

and FAME extracted and purified as described by Tocher & Harvie (1988). FAME 180 

were separated and quantified by gas-liquid chromatography (Carlo Erba Vega 8160, 181 

Milan, Italy) using a 30 m x 0.32 mm capillary column (CP wax 52CB; Chrompak 182 

Ltd., London, U.K.). Hydrogen was used as carrier gas and temperature programming 183 

was from 50oC to 150oC at 40oC/min and then to 225oC at 2oC/min. Individual methyl 184 

esters were identified by comparison to known standards and by reference to 185 

published data (Ackman, 1980). 186 

Total β-oxidation capacity  187 

Liver and red and white muscle were weighed and homogenized in 20% (w/v) 188 

ice-cold buffered sucrose solution containing 0.25M sucrose, 0.04M potassium 189 

phosphate buffer (pH 7.4), 0.15M KCl, 40mM KF and 1mM N-acetyl cysteine. The 190 

resulting total homogenates were then centrifuged at 1880  g for 10 min at 2°C. The 191 

resulting post-nuclear fractions were collected, and portions were used immediately to 192 

determine total (mitochondrial and peroxisomal) β-oxidation capacity. The total β-193 

oxidation capacity was determined as acid-soluble products using radiolabelled [1-194 

14C]-palmitoyl-CoA as a substrate as described by Frøyland et al. (1995).  195 
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Calculations and statistical analysis 196 

The following formulae were applied to the data:  197 

FCR (Feed Conversion Ratio) = (feed intake, g) x (wet weight gain, g) -1  198 

SGR (Specific Growth Rate), %/day = 100 x [lnW1 - lnW0] x (days) -1  199 

TGC (Thermal Growth Coefficient), x 1000 = 1000 x [(W1)1/3 - (W0)1/3] x (days x oC)-200 
1 201 

K (Condition Factor) = 100 x W x (fork length, cm) -3 202 

HSI % = 100 x (liver weight, g) x W -1 203 

VSI % = 100 x (viscera weight, g) x W -1 204 

CSI % = 100 x (heart weight, g) x W -1 205 

PRE (Protein retention efficiency, g protein gain x g protein ingested−1), % = 100 x 206 

[(P1W1−P0W0) x (PF x cumulative feed intake) −1] 207 

In the above formulae W is the weight of the sampled fish in grams, W0 and 208 

W1 are the initial and the final fish mean weights in grams, P0 and P1 are the initial 209 

and final protein concentrations of the fish, PF is the protein concentration of the feed 210 

on a dry matter basis, and cumulative feed intake was determined in grams on a dry 211 

matter basis. 212 

All the data are presented as means ± SD (n = 3) and all statistical analyses 213 

were performed using SPSS 13 (SPSS Inc, 2004). The effects of dietary RO, the 214 

fat/protein ratio and their interactions on growth, tissue fatty acid compositions, and 215 

β-oxidation were analysed by two-way ANOVA. Percentage data and data which 216 

were identified as non-homogeneous (Levene’s test) were subjected to square root or 217 
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log transformation before analysis. Differences were regarded as significant when P < 218 

0.05 (Zar, 1996). 219 

Results 220 

There were no significant differences in initial cage mean weights of the fish 221 

(Table 3). Following 12 weeks of feeding, the cage mean weight ranged between 222 

1711g and 1784g and the final length of the fish varied from 49.9 to 51.8 cm. No 223 

significant effects or interactions of dietary protein level and oil source were 224 

identified in final weight and length by two-way ANOVA. However, there was a 225 

significant effect of oil source on growth performance (SGR and TGC). Specifically, 226 

the inclusion of RO resulted in higher SGR (0.49 vs. 0.56 % day-1) and TGC (4.45 vs. 227 

5.13). Feed conversion ratios (FCR) were good for all treatments and ranged from 228 

0.81 to 0.87. No significant overall effects and interactions of dietary protein level and 229 

oil source on FCR were identified, although there was a trend (P<0.10) of lower FCR 230 

for the fish fed the HP diets compared to LP diets. K ranged from 1.30 to 1.34 and no 231 

significant effects and interactions of dietary protein level and oil source were seen. 232 

The organ-to-whole-body indices are shown in Table 3. VSI varied from 11.7% to 233 

12.6%, HSI from 1.4% to 1.5%, and similar CSIs were found for all groups 234 

(1.3%).Two-way ANOVA showed no significant effects and interactions of dietary 235 

protein level and oil source. 236 

The PRE were high for all groups (42-47%) and the there was a significant 237 

overall effect of dietary protein and fat level (P<0.05), with higher overall PRE for the 238 

LP groups compared to the HP groups. 239 

The proximate composition of whole body is shown in Table 4. Whole body 240 

moisture, protein and ash contents were very similar in all groups (approximately 662, 241 
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162 and 15 g kg-1, respectively), whereas final lipid content ranged from 145 to 164 g 242 

kg-1. Two-way ANOVA did not reveal any significant overall effects or interactions  243 

The replacement of increasing proportions of FO with RO in the diets resulted 244 

in significant changes in dietary fatty acid compositions (Table 2). FO diets had 245 

approximately 30% total saturates of which two thirds was 16:0, and about 35% total 246 

monoenes with around 13% 18:1n-9. Long chain monoenes, 20:1 and 22:1, 247 

comprising more than 10% of the diet, and 5% n-6PUFA predominantly 18:2n-6, and 248 

approximately 30% n-3PUFA, with over 20% as the n-3HUFA (mainly EPA and 249 

DHA). Graded inclusion of RO resulted in decreased 16:0, 20:1n-9, 20:4n-6, 20:5n-3 250 

and 22:6n-3 (approximately 10%, 2.5%, 0.2%, 3.5% and 4.5% respectively in diets 251 

containing 60% RO) and increased 18:1n-9, 18:2n-6 and 18:3n-3 (approximately 252 

43%, 14.5% and 6% respectively in diets containing 60% RO) within both dietary 253 

protein levels. The n-3/n-6 ratio decreased from 6.0 in diets containing 100% FO to 254 

1.0 in diets containing 60% RO. 255 

The total lipid content and the fatty acid compositions of muscle and liver are 256 

shown in Tables 5 & 6. Total lipid content ranged from 92.6 to 117.8 mg lipid g-1 257 

tissue and from 49.4 to 81.0 mg lipid g-1 tissue for muscle and liver, respectively. RO 258 

inclusion increased the total lipid content in liver but not in muscle. RO inclusion 259 

affected significantly tissue FA compositions. However, there were no significant 260 

interactions between dietary protein level and RO inclusion either in muscle or in liver 261 

and in most cases the overall protein level effect was not significant. Specifically, 262 

both in muscle and liver a reduction was seen in 16:0, total saturates, 20:1n-9, 22:1, 263 

20:4n-6, 20:5n-3, 22:6n-3, total n-3 PUFAs and n-3/n-6 ratio as RO inclusion 264 

increased within both dietary fat and protein levels. Conversely, 18:1n-9, total 265 

monoenes, 18:2n-6, total n-6 PUFAs and 18:3n-3 increased in muscle and liver with 266 
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graded RO inclusion. However, 20:2n-6 did not reflect the dietary content, as it 267 

increased both in liver and muscle with increased dietary RO inclusion. 268 

The total palmitoyl-CoA oxidation capacity in muscle and liver is shown in 269 

Table 7. The values shown for muscle represent the total β-oxidation capacity of a 270 

combined red and white muscle fraction. β-oxidation capacity ranged from 0.45 to 271 

0.61 pmol/min/mg protein in muscle and from 3.28 to 5.13 pmol/min/mg protein in 272 

liver. However, no significant overall effects of dietary protein/fat level or oil source 273 

were shown by two-way ANOVA. 274 

Discussion 275 

This study aimed to investigate the effects and interactions of the replacement 276 

of FO with RO at two different protein/lipid ratios at low water temperatures. Several 277 

previous studies have shown that replacement of FO with RO, blends of RO and other 278 

vegetable oils or other vegetable oils alone, such as linseed oil, (LO) or palm oil, (PO) 279 

in diets of salmon, has no negative effects on fish growth (Bell et al., 2001; 280 

Rosenlund et al., 2001; Bell et al., 2002; Bell et al., 2003a; Bell et al., 2003b; 281 

Bendiksen et al., 2003; Ng et al., 2004; Torstensen et al., 2004a; Torstensen et al., 282 

2004b). Moreover, when low protein feeds were compared to high protein feeds 283 

growth was not significantly affected (Azevedo et al., 2004; Solberg, 2004), 284 

especially at low temperatures (Hillestad et al., 1998; Bendiksen et al., 2003). It is 285 

likely that the effect of low temperature masked any potential effects of feed 286 

treatment, and that diet-related growth differences observed at the higher temperature 287 

were diminished at the lower temperature (Bendiksen et al., 2003). In line with the 288 

previous studies, the current experiment showed no significant effects due to dietary 289 

protein level in final weights SGR, TGC and FCRs. Nevertheless, oil source had a 290 

significant positive effect on SGR and TGC. Graded inclusion of RO, at the expense 291 
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of FO, resulted in increased SGR and TGC. This is in accordance with other studies 292 

and could be a result of enhanced protein utilisation, arising from improved use of oil 293 

for energy, due to superior fatty acid availability from vegetable oils at low water 294 

temperatures, although the exact mechanism of this effect is currently unclear 295 

(Bendiksen et al., 2003). Although no significant interactions were found, the effect 296 

of oil source seemed to differ between LP and HP series. This indicates that the lower 297 

SAFAs RO oil increased the digestible energy content of the feed, resulting in 298 

improved growth performance of the fish when the dietary protein and amino acids 299 

where in excess (HP feeds).  300 

The protein sparing effect could have also been enhanced by higher dietary oil 301 

levels. This is supported by the PRE results, as the overall PRE was significantly 302 

improved when the fish were fed the LP diets. Previous studies have also suggested a 303 

positive effect of increased dietary lipid content on protein retention and, hence, on 304 

protein sparing (Einen & Roem, 1997; Hillestad et al., 1998; Bendiksen et al., 2003). 305 

In this study, the different dietary treatments had no influence on the chemical 306 

composition of the whole carcass, either due to dietary protein level or due to the oil 307 

source. The moisture, protein and ash content of the carcass were almost constant 308 

between the groups and there were only minor differences in the lipid content. This is 309 

in agreement with the findings of Hillestad et al. (1998) who reported that the fillet 310 

and dressed carcass fat content was not influenced by dietary lipid level, although 311 

significant differences in tissue fat content were shown, due to the dietary energy 312 

content. Other studies have shown that when the dietary oil increases, tissue lipid, and 313 

usually moisture, increases, while protein decreases (Hillestad & Johnsen, 1994; 314 

Einen & Roem, 1997; Einen & Skrede, 1998; Hemre & Sandnes, 1999; Bendiksen et 315 

al., 2003; Azevedo et al., 2004; Solberg, 2004). However, in most of these studies the 316 
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lipid content of the fillet, carcass or whole body was possibly influenced by the 317 

differences in the dietary energy content, as only Azevedo et al. (2004) and Solberg 318 

(2004) used isoenergetic diets. In the present study no significant differences were 319 

observed due to dietary oil source. This is in agreement with the results reported by 320 

Bendiksen et al. (2003) when FO was replaced with a blend of VO at low water 321 

temperatures (2oC). By contrast, other studies have shown that when RO replaced FO 322 

in diets of Atlantic salmon, the chemical composition of tissues is significantly 323 

influenced, to a small extent, although these studies were of longer duration than the 324 

present study (Bell et al., 2001; Torstensen et al., 2004b). It has been shown that in 325 

Atlantic salmon fat deposition increases as the fish grow larger (Jobling & Johansen, 326 

2003). This was clearly demonstrated in the present study where an increase in lipid 327 

content, along with a decrease in crude protein and ash, was observed between the 328 

initial and final sampling.  329 

In the present trial K, VSI, HSI and CSI were not affected by the different 330 

dietary treatments. This is in agreement with other studies, as changes in dietary 331 

protein / fat ratio in Atlantic salmon have not been associated with changes in K, VSI 332 

and HSI (Einen & Roem, 1997; Solberg, 2004) or with the replacement of FO with 333 

RO and LO (Rosenlund et al., 2001; Bendiksen et al., 2003). Few reports on diet 334 

effects on the CSI are available although a reduced CSI was observed in one study 335 

where salmon were fed diets where sunflower oil was used as a FO replacement (Bell 336 

et al., 1991). 337 

The fatty acid compositions of tissue lipids of Atlantic salmon are known to be 338 

highly influenced by dietary fatty acids (Torstensen et al., 2000; Rosenlund et al., 339 

2001) and linear correlations exist between individual fatty acids in tissue total lipid 340 

and their concentrations in dietary lipid (Bell et al., 2001; Bell et al., 2003a; Tocher et 341 
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al., 2003a). In the present study, the differences in the dietary fatty acid compositions 342 

resulting from the graded inclusion of RO, at the expense of FO, were not affected by 343 

dietary protein level. Hence, diets including similar proportions of RO had very 344 

similar fatty acid compositions irrespective of their protein/lipid ratio. As a result the 345 

oil source affected significantly liver and muscle FA compositions while no 346 

significant effects on the tissue FA compositions were shown due to the dietary 347 

protein level. The results are in line with previous studies showing that dietary fatty 348 

acid compositions are reflected in tissue FA compositions.  349 

However, previous studies have shown that although dietary fatty acids 350 

correlated to fatty acids deposited in flesh, specific fatty acids were selectively 351 

utilized or retained (Bell et al., 2001; 2003a; Torstensen et al., 2004a). This was also 352 

demonstrated in the present study. Dietary 18:1n-9 increased more than 3-fold and 353 

18:2n-6 and 18:3n-3 more than 4-fold in diets containing 60% RO compared to FO 354 

diets, whereas in muscle and liver these fatty acids increased only around 2-fold. 355 

These data confirm that when certain fatty acids are provided to the fish in high 356 

concentrations, they are readily metabolised, largely catabolism by β-oxidation, 357 

although they may also be subject to limited desaturation and elongation (Bell et al., 358 

2003a). On the contrary, n-3 HUFAs were selectively deposited and retained in flesh. 359 

Tissue DHA was reduced only by 30% - 40% and EPA by less than 45% when fish 360 

were fed diets containing 60% RO compared to FO groups, whereas in 60% RO diets 361 

these HUFAs were only 30% of the concentrations in 0% RO diets. Apart from the 362 

selective deposition and retention of these FAs, the moderate reductions in EPA and 363 

DHA could have also been affected, even to small extent, by the hepatic desaturation 364 

and elongation of dietary α-linolenic acid, which can be increased by inclusion of 365 
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vegetable oils in the diets (Tocher et al., 2000; Tocher et al., 2001; Tocher et al., 366 

2003a; Tocher et al., 2003b). 367 

It is well documented that n-3 HUFAs, particularly EPA and DHA and a high 368 

n-3 / n-6 ratio, in human diets are beneficial for various aspects of human health 369 

including preventive or protective effects in coronary heart disease, rheumatoid 370 

arthritis, cancer, neurodevelopmental and mood disorders etc (De Deckere et al., 371 

1998; Horrocks & Yeo, 1999; Simopoulos, 1999; Hunter & Roberts, 2000; ISSFAL, 372 

2000; Simopoulos, 2003). At present, intensive culture of Atlantic salmon uses marine 373 

FO resulting in a highly nutritious and healthy product, as it is rich in n-3 HUFAs and 374 

has a high n-3 / n-6 ratio(Bell et al., 1998). However, in recent times there has been a 375 

desire to investigate more sustainable alternatives to fish meal and fish oil for use in 376 

aquaculture feeds. Clearly, any changes towards use of vegetable alternatives to 377 

marine FO should not be at the expense of the quality and nutritional value of the final 378 

product. In this regard the present study showing moderate reduction of EPA and 379 

DHA in fish fed diets containing RO, at levels as high as 60% even at low protein 380 

levels, could be significant, although it should be remembered that this was a 381 

relatively short trial compared to the whole production cycle for Atlantic salmon.  382 

The total β-oxidation capacity, including mitochondrial and peroxisomal β-383 

oxidation activity, was measured in liver and a combined red and white muscle 384 

fraction. No significant effects were observed either in liver or muscle. These results 385 

are in line with other studies which showed that when FO was replaced by RO or 386 

other VO, in diets for Atlantic salmon, β-oxidation capacity was not affected (Tocher 387 

et al., 2003b; Stubhaug et al., 2005). 388 

The results of this study showed no negative effects on growth and feed 389 

conversion, no major detrimental effects on lipid and fatty acid metabolism in Atlantic 390 
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salmon and an enhanced protein sparing effect, when fish were fed with lower protein 391 

feeds where RO replaced FO up to 60% of the total oil. In conclusion, the results of 392 

this study suggest that more sustainable, lower protein diets, in which a high 393 

proportion of the dietary protein and lipid is of non-marine origin, with high rapeseed 394 

oil inclusion, can be used in Atlantic salmon culture at low water temperatures.  395 
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Table 1 Feed components and proximate compositions (g kg-1) of the experimental diets

HP-R0 HP-R30 HP-R60 LP-RO LP-R30 LP-R60
Components
Fishmeal 390 390 390 310 310 310
Oil seed and legume seed meals 225 225 225 235 235 235
South American fish oil 280 196 112 318 222 126
Rapeseed oil a 0 84 168 0 96 192
Binder 120 120 120 130 130 130
Premixes b 18 18 18 23 23 23

Analysed composition c

Moisture 43 47 44 67 58 56
Protein 387 388 391 344 347 342
Lipid 327 323 321 353 347 361
Ash 79 78 78 70 70 69

Gross Energy, kJ g-1 d 25.2 25.1 25.2 25.3 25.6 25.5

Protein/Energy ratio e 15.3 15.5 15.3 13.6 13.4 13.2

a Double-low quality rapeseed oil 
b Vitamin and mineral premixes prepared according to BioMar A/S commercial standards. 
  Includes crystaline amino acids and Carophyl pink to provide 40mg/kg astaxanthin. 
c Wet weight
d Estimated from caloric values of 39.5, 23.6 and 17.2 kJ g -1 for fat, protein and carbohydrate, 
  respectively
e Calculated g protein kJ -1  
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Table 2 Fatty acid compositions (% by weight of total fatty acids) of the
experimental diets

Fatty Acid HP-R0 HP-R30 HP-R60 LP-R0 LP-R30 LP-R60
14:0 5.9 3.5 1.8 5.4 3.1 1.9
16:0 20.3 15.2 10.4 19.6 14.3 10.4
18:0 3.6 3.0 2.5 3.5 2.9 2.5
Total saturateda 31.1 23.1 15.9 29.9 21.6 16.4

16:1n-7 6.6 4.2 2.3 6.1 4.2 2.2
18:1n-9 13.4 29.0 42.5 13.2 28.0 42.9
18:1n-7 2.5 2.8 3.0 2.5 3.1 2.6
20:1n-9 4.4 3.5 2.6 4.6 3.4 2.5
22:1 6.5 4.8 2.5 6.7 4.3 2.5
24:1n-9 0.8 0.6 0.4 0.9 0.9 0.5
Total monoenesb 34.6 45.1 53.4 34.7 44.5 53.4

18:2n-6 3.7 9.4 14.5 3.5 9.4 14.3
20:2n-6 0.2 0.2 0.1 0.3 0.2 0.1
20:4n-6 0.5 0.3 0.2 0.6 0.4 0.2
22:5n-6 0.3 0.2 0.1 0.3 0.2 0.1
Total n-6 PUFAc 5.0 10.4 15.1 5.0 10.4 14.9

18:3n-3 1.3 3.7 5.8 1.4 3.9 5.9
18:4n-3 2.9 1.8 1.0 3.0 2.0 1.0
20:4n-3 0.7 0.4 0.2 0.7 0.5 0.3
20:5n-3 10.4 6.7 3.6 11.0 7.4 3.5
22:5n-3 2.0 0.7 0.4 1.2 0.8 0.3
22:6n-3 11.9 8.0 4.6 12.8 8.7 4.3
Total n-3 PUFAd 29.3 21.4 15.5 30.3 23.4 15.3

Total PUFA 34.3 31.8 30.7 35.4 33.8 30.2
(n-3) / (n-6) 5.9 2.1 1.0 6.0 2.2 1.0

aIncludes 15:0, 20:0 & 22:0.
 bIncludes 16:1n-9 & 20:1n-7. 
cIncludes 18:3n-6, 20:3n-6 & 22:4n-6. 
dIncludes 20:3n-3 & 22:4n-3.  
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Table 3 Growth and performance of Atlantic salmon fed the experimental diets for 12 weeks

Parameter protein oil prot x oil
Initial Weight (g) 1168.4 ± 32.3 1184.6 ± 16.1 1152.4 ± 21.0 1162.8 ± 24.4 1171.9 ± 14.6 1168.4 ± 24.4
Final Weight (g) 1711.3 ± 79.8 1772.0 ± 36.5 1784.3 ± 48.5 1721.7 ± 47.6 1760.3 ± 27.0 1767.7 ± 57.6 0.812 0.149 0.894
Final Length (cm) 50.5 ± 0.4 50.9 ± 1.1 50.7 ± 1.0 50.7 ± 0.3 49.9 ± 0.6 51.8 ± 0.6 0.829 0.130 0.077
Mortalities1 5 1 2 3 0 5

FCR 0.86 ± 0.01 0.84 ± 0.02 0.81 ± 0.01 0.86 ± 0.02 0.87 ± 0.04 0.85 ± 0.03 0.077 0.160 0.349
SGR 0.49 ± 0.03 0.52 ± 0.01 0.56 ± 0.01 0.50 ± 0.02 0.52 ± 0.01 0.53 ± 0.03 0.723 0.002 0.128
TGC 4.45 ± 0.27 4.75 ± 0.16 5.13 ± 0.11 4.59 ± 0.20 4.78 ± 0.07 4.87 ± 0.28 0.742 0.005 0.227
PRE 42.32 ± 3.45 42.55 ± 1.16 44.03 ± 1.44 45.56 ± 1.85 46.33 ± 1.63 46.08 ± 5.26 0.045 0.799 0.868

K (%) 1.31 ± 0.01 1.30 ± 0.02 1.32 ± 0.04 1.31 ± 0.06 1.30 ± 0.01 1.34 ± 0.01 0.609 0.274 0.941
VSI (%) 12.03 ± 1.00 12.01 ± 0.69 12.41 ± 0.98 12.57 ± 0.27 11.67 ± 0.28 11.90 ± 0.49 0.749 0.515 0.395
HSI (%) 1.34 ± 0.12 1.32 ± 0.02 1.45 ± 0.20 1.36 ± 0.10 1.36 ± 0.07 1.31 ± 0.07 0.646 0.822 0.371
CSI (%) 0.15 ± 0.03 0.13 ± 0.01 0.13 ± 0.00 0.13 ± 0.01 0.14 ± 0.03 0.12 ± 0.01 0.358 0.556 0.522

All values are mean ± S.D. (n=3).
1 Total number

TWO WAY ANOVA PLP-R30 LP-R60HP-R0 HP-R30 HP-R60 LP-RO
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Table 4 Proximate composition (g kg-1 of wet weight) of whole body from Atlantic salmon fed the experimental diets for 12 weeks

protein oil prot x oil
Moisture 666.1 ± 16.5 664.7 ± 12.6 661.7 ± 12.9 665.3 ± 11.5 666.5 ± 6.2 665.8 ± 13.9 650.8 ± 10.9 0.602 0.522 0.350
Protein 176.4 ± 2.2 162.2 ± 4.9 162.1 ± 4.8 162.9 ± 2.5 162.2 ± 2.5 162.2 ± 4.2 162.3 ± 2.0 0.925 0.976 0.983
Lipid 128.9 ± 16.1 150.3 ± 10.8 155.1 ± 6.9 151.9 ± 11.9 145.2 ± 6.7 149.5 ± 13.2 164.5 ± 10.5 0.901 0.250 0.259
Ash 17.5 ± 0.7 14.9 ± 0.3 15.4 ± 1.0 15.0 ± 0.4 16.0 ± 0.7 15.4 ± 1.2 15.1 ± 1.0 0.376 0.672 0.421

All values are mean ± S.D. (n=3).
1Values not included in the two-way ANOVA

TWO WAY ANOVA PHP-R60 LP-R0 LP-R30 LP-R60Start 1 HP-R0 HP-R30
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Table 5 Total lipid (mg lipid g-1 tissue) and fatty acid compositions (% by weight of total fatty acids) of muscle from Atlantic salmon fed the
experimental diets for 12 weeks

protein oil prot x oil
Total Lipid 117.8 ± 8.5 101.9 ± 6.4 102.8 ± 4.1 92.6 ± 13.9 101.7 ± 17.1 110.0 ± 9.6 0.259 0.748 0.057

Fatty acid
14:0 4.7 ± 0.4 4.1 ± 0.1 3.4 ± 0.3 5.1 ± 0.4 4.3 ± 0.1 3.6 ± 0.4 0.064 0.000 0.739
16:0 16.0 ± 0.8 15.2 ± 0.9 13.5 ± 1.3 16.2 ± 1.4 14.6 ± 1.1 13.3 ± 1.1 0.649 0.004 0.857
18:0 3.1 ± 0.2 3.1 ± 0.3 3.1 ± 0.4 3.1 ± 0.3 2.9 ± 0.3 2.8 ± 0.3 0.299 0.635 0.825
Total saturated1 24.5 ± 1.4 23.2 ± 1.5 21.0 ± 2.5 25.3 ± 2.4 22.7 ± 1.7 20.8 ± 2.1 0.971 0.015 0.874

16:1n-7 6.6 ± 0.1 5.5 ± 0.2 4.4 ± 0.1 6.8 ± 0.0 5.6 ± 0.1 4.6 ± 0.1 0.019 0.000 0.474
18:1n-9 15.7 ± 0.5 23.3 ± 1.1 29.7 ± 0.9 15.9 ± 0.3 22.9 ± 0.4 27.9 ± 1.9 0.197 0.000 0.340
18:1n-7 3.2 ± 0.1 3.4 ± 0.1 3.1 ± 0.1 3.2 ± 0.2 3.3 ± 0.1 3.1 ± 0.3 0.766 0.070 0.613
20:1n-9 7.8 ± 0.5 7.2 ± 0.3 6.7 ± 0.2 8.0 ± 0.2 7.2 ± 0.2 6.8 ± 0.2 0.577 0.000 0.968
22:1 8.3 ± 0.4 7.4 ± 0.5 6.0 ± 0.6 8.5 ± 0.1 7.3 ± 0.2 6.4 ± 0.4 0.573 0.000 0.566
24:1n-9 0.8 ± 0.0 0.8 ± 0.0 0.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.0 0.7 ± 0.0 0.407 0.002 0.531
Total monoenes2 42.9 ± 1.2 48.0 ± 1.4 51.0 ± 0.5 43.8 ± 0.3 47.4 ± 0.2 49.9 ± 1.0 0.426 0.000 0.270

18:2n-6 3.7 ± 0.1 6.3 ± 0.1 8.2 ± 0.9 3.6 ± 0.1 6.3 ± 0.5 8.2 ± 0.6 0.922 0.000 0.942
20:2n-6 0.4 ± 0.0 0.5 ± 0.0 0.8 ± 0.2 0.4 ± 0.0 0.5 ± 0.0 0.6 ± 0.1 0.179 0.000 0.076
20:3n-6 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.870 0.274 0.481
20:4n-6 0.5 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.843 0.000 0.756
Total n-6 PUFA3 5.1 ± 0.1 7.5 ± 0.2 9.6 ± 0.8 5.0 ± 0.2 7.6 ± 0.6 9.5 ± 0.7 0.817 0.000 0.912

18:3n-3 1.2 ± 0.0 2.2 ± 0.1 3.0 ± 0.4 1.2 ± 0.1 2.2 ± 0.2 3.0 ± 0.3 0.743 0.000 0.968
18:4n-3 1.8 ± 0.1 1.3 ± 0.2 1.0 ± 0.1 1.8 ± 0.1 1.4 ± 0.1 1.1 ± 0.0 0.302 0.000 0.418
20:4n-3 1.5 ± 0.1 1.1 ± 0.1 0.9 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 1.0 ± 0.0 0.936 0.000 0.166
20:5n-3 7.4 ± 0.4 5.4 ± 0.9 4.2 ± 0.4 7.2 ± 0.7 5.7 ± 0.3 4.6 ± 0.2 0.485 0.000 0.679
22:5n-3 2.5 ± 0.1 1.9 ± 0.2 1.6 ± 0.2 2.5 ± 0.3 1.9 ± 0.2 1.7 ± 0.0 0.505 0.000 0.734
22:6n-3 12.9 ± 0.9 9.3 ± 1.2 7.5 ± 0.7 11.9 ± 1.1 9.7 ± 0.5 8.2 ± 0.1 0.898 0.000 0.252
Total n-3 PUFA4 27.5 ± 1.1 21.4 ± 2.6 18.4 ± 1.9 26.0 ± 2.3 22.3 ± 1.3 19.8 ± 0.5 0.668 0.000 0.422

Total PUFA 32.6 ± 1.2 28.8 ± 2.8 28.0 ± 2.7 31.0 ± 2.6 29.8 ± 1.9 29.3 ± 1.2 0.766 0.081 0.535
(n-3) / (n-6) 5.4 ± 0.1 2.9 ± 0.3 1.9 ± 0.1 5.2 ± 0.2 2.9 ± 0.1 2.1 ± 0.1 0.557 0.000 0.263

Values are mean ± S.D. (n=3).
1Includes 15:0, 20:0 & 22:0.
2Includes 16:1n-9 & 20:1n-7. 
3Includes 18:3n-6, 20:3n-6 & 22:4n-6. 
4Includes 20:3n-3 & 22:4n-3.

LP-R30 LP-R60 TWO WAY ANOVA PHP-R0 HP-R30 HP-R60 LP-R0
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Table 6 Total lipid (mg lipid g-1 tissue) and fatty acid compositions (% by weight of total fatty acids) of liver from Atlantic salmon fed the
experimental diets for 12 weeks

protein oil prot x oil
Total lipid 62.7 ± 16.6 49.4 ± 6.6 81.0 ± 37.0 52.5 ± 16.7 54.9 ± 7.9 69.3 ± 16.2 0.422 0.037 0.519

Fatty acid
14:0 2.4 ± 0.4 1.8 ± 0.0 1.2 ± 0.1 2.7 ± 0.3 1.8 ± 0.3 1.2 ± 0.1 0.543 0.000 0.714
16:0 15.2 ± 1.7 12.6 ± 1.1 10.0 ± 0.9 14.2 ± 1.0 13.2 ± 1.1 9.1 ± 1.0 0.418 0.000 0.450
18:0 6.1 ± 0.6 5.1 ± 0.3 4.8 ± 0.5 5.5 ± 0.1 4.9 ± 0.5 4.0 ± 0.2 0.022 0.000 0.537
Total saturated1 24.4 ± 2.5 20.1 ± 1.4 16.5 ± 1.4 23.2 ± 1.2 20.4 ± 1.2 15.1 ± 1.5 0.359 0.000 0.611

16:1n-7 3.7 ± 0.5 2.6 ± 0.2 1.9 ± 0.2 4.1 ± 0.2 2.6 ± 0.3 1.9 ± 0.2 0.327 0.000 0.268
18:1n-9 15.9 ± 4.0 23.0 ± 3.9 35.7 ± 3.9 16.7 ± 2.0 21.3 ± 2.1 37.1 ± 4.8 0.928 0.000 0.729
18:1n-7 3.1 ± 0.3 2.9 ± 0.2 3.1 ± 0.1 3.4 ± 0.3 3.0 ± 0.3 3.2 ± 0.5 0.234 0.300 0.946
20:1n-9 4.4 ± 0.6 4.2 ± 0.8 5.0 ± 0.2 4.7 ± 0.3 4.0 ± 0.5 5.3 ± 0.7 0.692 0.025 0.615
22:1 1.4 ± 0.2 1.1 ± 0.1 0.9 ± 0.0 2.1 ± 0.4 1.4 ± 0.3 1.0 ± 0.0 0.007 0.000 0.238
24:1n-9 1.0 ± 0.3 0.9 ± 0.2 0.6 ± 0.2 0.9 ± 0.1 1.1 ± 0.1 0.7 ± 0.1 0.737 0.011 0.299
Total monoenes2 29.8 ± 5.2 35.0 ± 5.1 47.3 ± 4.0 32.1 ± 2.8 33.6 ± 3.4 49.3 ± 6.2 0.661 0.000 0.746

18:2n-6 2.1 ± 0.4 4.9 ± 0.5 8.2 ± 0.4 2.5 ± 0.3 4.9 ± 0.5 9.0 ± 0.5 0.124 0.000 0.396
20:2n-6 0.6 ± 0.1 1.3 ± 0.2 2.1 ± 0.1 0.6 ± 0.1 1.2 ± 0.1 2.1 ± 0.2 0.695 0.000 0.600
20:3n-6 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.853 0.001 0.215
20:4n-6 2.2 ± 0.5 1.9 ± 0.4 1.0 ± 0.3 1.9 ± 0.2 2.0 ± 0.3 1.0 ± 0.2 0.524 0.000 0.413
Total n-6 PUFA3 5.7 ± 0.1 8.6 ± 0.4 11.9 ± 0.3 5.7 ± 0.3 8.7 ± 0.1 12.5 ± 0.4 0.100 0.000 0.094

18:3n-3 0.7 ± 0.1 1.6 ± 0.2 2.7 ± 0.1 0.9 ± 0.1 1.6 ± 0.2 2.9 ± 0.1 0.047 0.000 0.242
18:4n-3 0.3 ± 0.1 0.2 ± 0.0 0.1 ± 0.0 0.4 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.032 0.000 0.879
20:4n-3 1.4 ± 0.2 1.1 ± 0.1 0.8 ± 0.0 1.7 ± 0.1 1.1 ± 0.1 0.8 ± 0.0 0.208 0.000 0.096
20:5n-3 10.4 ± 1.8 8.8 ± 1.3 5.2 ± 0.9 10.3 ± 0.8 9.4 ± 0.8 4.9 ± 1.4 0.921 0.000 0.808
22:5n-3 3.3 ± 0.7 2.9 ± 0.3 1.5 ± 0.2 3.7 ± 0.3 2.5 ± 0.2 1.4 ± 0.3 0.671 0.000 0.370
22:6n-3 23.7 ± 4.6 21.2 ± 3.4 13.4 ± 3.1 21.9 ± 2.1 22.0 ± 2.0 12.1 ± 3.7 0.621 0.000 0.763
Total n-3 PUFA4 40.2 ± 5.9 36.3 ± 4.1 24.3 ± 4.2 39.0 ± 3.1 37.3 ± 2.3 23.0 ± 5.2 0.814 0.000 0.877

Total PUFA 45.9 ± 6.0 45.0 ± 3.7 36.2 ± 4.2 44.7 ± 3.1 46.0 ± 2.1 35.5 ± 4.8 0.899 0.002 0.893
(n-3) / (n-6) 7.0 ± 1.0 4.2 ± 0.6 2.1 ± 0.4 6.9 ± 0.7 4.3 ± 0.3 1.8 ± 0.5 0.757 0.000 0.911

Values are mean ± S.D. (n=3).
1Includes 15:0, 20:0 & 22:0.
2Includes 16:1n-9 & 20:1n-7. 
3Includes 18:3n-6, 20:3n-6 & 22:4n-6. 
4Includes 20:3n-3 & 22:4n-3.

HP-R0 HP-R30 HP-R60 TWO WAY ANOVA PLP-R0 LP-R30 LP-R60
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Table 7 Total β-oxidation capacity (pmol/min/mg protein) of muscle and liver from Atlantic salmon fed the experimental diets for 12
weeks

Tissue protein oil prot x oil
Muscle1 0.49 ± 0.02 0.61 ± 0.10 0.57 ± 0.12 0.48 ± 0.09 0.45 ± 0.07 0.49 ± 0.07 0.062 0.575 0.340
Liver 3.28 ± 1.19 4.72 ± 1.33 5.13 ± 1.77 3.86 ± 0.16 4.09 ± 0.61 4.42 ± 0.79 0.631 0.196 0.544

Values are mean ± S.D. (n=3).
1Includes red and white muscle

LP-R30 LP-R60 TWO WAY ANOVA PHP-R0 HP-R30 HP-R60 LP-R0

 

 


