499 research outputs found

    Argentine ants prefer semi-natural sites over urban sites

    Get PDF

    Photosynthetic and Respiratory Activity in Anacystis nidulans

    Full text link

    Interspecific displacement mechanisms by the invasive little fire ant Wasmannia auropunctata

    Get PDF
    Abstract Competition between invasive species and native ones in the new environment was found to be significant and to affect both animal and plant species. Invasive ants are notorious for displacing local ant species through competition. Competitive displacement of native species can occur through interference and or resource competition. However, for invasive ants, little is known about the relative importance of competitive displacement. We studied competitive interactions of the little fire ant, Wasmannia auropunctata, one of the most destructive invasive ant species, with two other ant species, Monomorium subopacum and Pheidole teneriffana. We compared the species' foraging behavior and studied their aggressive interactions around food baits for the short (2 h) and long (21 days) term in the laboratory. Surprisingly we found that in short term experiments W. auropunctata had the poorest foraging abilities of the three species studied: it took the workers the longest to locate the bait and retrieve it; in addition they retrieved the lowest amount of food. When both W. auropunctata and M. subopacum were foraging the same bait, in the short term competition experiment, W. auropunctata workers did not defend the bait, and ceased foraging when encountered with competition. The long-term experiments revealed that W. auropunctata had the advantage in aggressive interactions over time; they eliminated seven of nine M. subopacum's nests while consuming some of the workers and brood. According to our laboratory studies, W. auropunctata cannot be considered an extirpator species, unless it has a substantial numerical advantage, in contrast with previous assumptions. Otherwise it may behave as an insinuator species, i.e. the workers do not initiate aggression and by staying undetected they can continue foraging adjacent to dominant species

    Corrigendum: Collective search by ants in microgravity

    Get PDF
    The problem of collective search is a tradeoff between searching thoroughly and covering as much area as possible. This tradeoff depends on the density of searchers. Solutions to the problem of collective search are currently of much interest in robotics and in the study of distributed algorithms, for example to design ways that without central control robots can use local information to perform search and rescue operations. Ant colonies operate without central control. Because they can perceive only local, mostly chemical and tactile cues, they must search collectively to find resources and to monitor the colony's environment. Examining how ants in diverse environments solve the problem of collective search can elucidate how evolution has led to diverse forms of collective behavior. An experiment on the International Space Station in January 2014 examined how ants (Tetramorium caespitum) perform collective search in microgravity. In the ISS experiment, the ants explored a small arena in which a barrier was lowered to increase the area and thus lower ant density. In microgravity, relative to ground controls, ants explored the area less thoroughly and took more convoluted paths. It appears that the difficulty of holding on to the surface interfered with the ants’ ability to search collectively. Ants frequently lost contact with the surface, but showed a remarkable ability to regain contact with the surface

    Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects

    Get PDF
    This paper outlines an investigation on current situation of Spirulina (Arthrospira) industry in Inner Mongolia, an internal region of China with temperate continental climate. More than 20 Spirulina plants have been established in Inner Mongolia since 2001, most of which are located at Wulan Town in the Ordos Plateau. By the end of 2009, the total annual production of Spirulina in the Ordos Plateau surpassed 700 t (dw), which account for ca. 80% of the total productivity of Inner Mongolia, and ca. 20% of China. Besides abundant solar radiation and enough freshwater favorable for Spirulina production, the three technical strategies contribute to the prosperity and success of Spirulina industry in the region: (1) reducing the cost or investment by overall advantages of rich local natural resources with low cost for Spirulina production, such as alkaline lakes, coal, electricity, and sandy land; (2) controlling the culture temperature and to avoid contamination by building plastic greenhouses on raceway ponds, (3) reducing investment by simplifying the construction of the ponds and the greenhouses. As the result, the growth period of Spirulina has been prolonged from about 120 to about 165 days, the cost of Spirulina has decreased by 25–30%, and the quality of products has been enhanced substantially. Inner Mongolia is expected to become the largest base for Spirulina production not only in China, but also in the world in the near future

    Worldwide invasion by the little fire ant: routes of introduction and eco-evolutionary pathways

    Get PDF
    Biological invasions are generally thought to occur after human aided migration to a new range. However, human activities prior to migration may also play a role. We studied here the evolutionary genetics of introduced populations of the invasive ant Wasmannia auropunctata at a worldwide scale. Using microsatellite markers, we reconstructed the main routes of introduction of the species. We found three main routes of introduction, each of them strongly associated to human history and trading routes. We also demonstrate the overwhelming occurrence of male and female clonality in introduced populations of W. auropunctata, and suggest that this particular reproduction system is under selection in human-modified habitats. Together with previous researches focused on native populations, our results suggest that invasive clonal populations may have evolved within human modified habitats in the native range, and spread further from there. The evolutionarily most parsimonious scenario for the emergence of invasive populations of the little fire ant might thus be a two-step process. The W. auropunctata case illustrates the central role of humans in biological change, not only due to changes in migration patterns, but also in selective pressures over species

    Wastewater nutrient removal in a mixed microalgae bacteria culture: effect of light and temperature on the microalgae bacteria competition

    Full text link
    [EN] The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae¿bacteria culture and their effects on the microalgae¿bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125¿µE¿m¿2¿s¿1. Other two experiments were carried out at variable temperatures: 23¿±¿2°C and 28¿±¿2°C at light intensity of 85 and 125¿µE¿m¿2¿s¿1, respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85¿125¿µE¿m¿2¿s¿1 and 22¿±¿1°C. In the microalgae¿bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae¿bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5¿±¿9.6, 80.3¿±¿6.5 and 94.3¿±¿7.9¿mgVSS¿L¿1¿d¿1 for a light intensity of 40, 85 and 125¿µE¿m¿2¿s¿1, respectivelyThis research work was possible because of Projects CTM2011-28595-C02-01 and CTM2011-28595-C02-02 [funded by the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund and the Generalitat Valenciana GVA-ACOMP2013/203]. This research was also supported by the Spanish Ministry of Education, Culture and Sport via a pre doctoral FPU fellowship to the first author [FPU14/05082].Gonzalez-Camejo, J.; Barat, R.; Pachés Giner, MAV.; Murgui Mezquita, M.; Seco Torrecillas, A.; Ferrer, J. (2018). Wastewater nutrient removal in a mixed microalgae bacteria culture: effect of light and temperature on the microalgae bacteria competition. Environmental Technology. 39(4):503-515. https://doi.org/10.1080/09593330.2017.1305001S503515394Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014Huang, Z., Ong, S. L., & Ng, H. Y. (2011). Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research, 45(2), 705-713. doi:10.1016/j.watres.2010.08.035Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247-253. doi:10.1016/j.biortech.2012.09.022Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. doi:10.1016/j.biotechadv.2007.02.001Rawat, I., Bhola, V., Kumar, R. R., & Bux, F. (2013). Improving the feasibility of producing biofuels from microalgae using wastewater. Environmental Technology, 34(13-14), 1765-1775. doi:10.1080/09593330.2013.826287Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.-A., & Steyer, J.-P. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207-214. doi:10.1016/j.biortech.2010.06.154Milledge, J. J. (2010). Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Bio/Technology, 10(1), 31-41. doi:10.1007/s11157-010-9214-7Posadas, E., García-Encina, P.-A., Soltau, A., Domínguez, A., Díaz, I., & Muñoz, R. (2013). Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors. Bioresource Technology, 139, 50-58. doi:10.1016/j.biortech.2013.04.008Podevin, M., De Francisci, D., Holdt, S. L., & Angelidaki, I. (2014). Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. Journal of Applied Phycology, 27(4), 1415-1423. doi:10.1007/s10811-014-0468-2Meseck, S. L., Smith, B. C., Wikfors, G. H., Alix, J. H., & Kapareiko, D. (2006). Nutrient interactions between phytoplankton and bacterioplankton under different carbon dioxide regimes. Journal of Applied Phycology, 19(3), 229-237. doi:10.1007/s10811-006-9128-5Risgaard-Petersen, N., Nicolaisen, M. H., Revsbech, N. P., & Lomstein, B. A. (2004). Competition between Ammonia-Oxidizing Bacteria and Benthic Microalgae. Applied and Environmental Microbiology, 70(9), 5528-5537. doi:10.1128/aem.70.9.5528-5537.2004Tiquia-Arashiro, S. M., & Mormile, M. (2013). Sustainable technologies: bioenergy and biofuel from biowaste and biomass. Environmental Technology, 34(13-14), 1637-1638. doi:10.1080/09593330.2013.834162Jordan, B. R. (1996). The Effects of Ultraviolet-B Radiation on Plants: A Molecular Perspective. Advances in Botanical Research, 97-162. doi:10.1016/s0065-2296(08)60057-9Znad, H., Naderi, G., Ang, H. M., & Tade, M. O. (2012). CO2 Biomitigation and Biofuel Production Using Microalgae: Photobioreactors Developments and Future Directions. Advances in Chemical Engineering. doi:10.5772/32568Martínez, M. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263-272. doi:10.1016/s0960-8524(99)00121-2Xin, L., Hong-ying, H., & Yu-ping, Z. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 3098-3102. doi:10.1016/j.biortech.2010.10.055Robles, Á., Durán, F., Ruano, M. V., Ribes, J., Rosado, A., Seco, A., & Ferrer, J. (2015). Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology, 36(14), 1795-1806. doi:10.1080/09593330.2015.1012180Reynolds, C. S. (2006). The Ecology of Phytoplankton. doi:10.1017/cbo9780511542145Küster, E., Dorusch, F., & Altenburger, R. (2005). EFFECTS OF HYDROGEN SULFIDE TO VIBRIO FISCHERI, SCENEDESMUS VACUOLATUS, AND DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 24(10), 2621. doi:10.1897/04-546r.1Park, J., Jin, H.-F., Lim, B.-R., Park, K.-Y., & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101(22), 8649-8657. doi:10.1016/j.biortech.2010.06.142McGinn, P. J., Dickinson, K. E., Park, K. C., Whitney, C. G., MacQuarrie, S. P., Black, F. J., … O’Leary, S. J. B. (2012). Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Research, 1(2), 155-165. doi:10.1016/j.algal.2012.05.001Mara, D. D., & Feachem, R. G. A. (2003). Unitary environmental classification of water- and excreta-related communicable diseases. Handbook of Water and Wastewater Microbiology, 185-192. doi:10.1016/b978-012470100-7/50012-1Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194. doi:10.1016/s0015-3796(17)30778-3Laliberté, G., Lessard, P., de la Noüe, J., & Sylvestre, S. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technology, 59(2-3), 227-233. doi:10.1016/s0960-8524(96)00144-7Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003Xin, L., Hong-ying, H., Ke, G., & Jia, Y. (2010). Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering, 36(4), 379-381. doi:10.1016/j.ecoleng.2009.11.003Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., … Ruan, R. (2009). Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186. doi:10.1007/s12010-009-8866-7Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146-154. doi:10.1016/j.biortech.2014.01.025Sarat Chandra, T., Deepak, R. S., Maneesh Kumar, M., Mukherji, S., Chauhan, V. S., Sarada, R., & Mudliar, S. N. (2016). Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: Effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresource Technology, 207, 430-439. doi:10.1016/j.biortech.2016.01.044Krustok, I., Odlare, M., Truu, J., & Nehrenheim, E. (2016). Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource Technology, 202, 238-243. doi:10.1016/j.biortech.2015.12.020Chen, X., Goh, Q. Y., Tan, W., Hossain, I., Chen, W. N., & Lau, R. (2011). Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresource Technology, 102(10), 6005-6012. doi:10.1016/j.biortech.2011.02.061Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae – Defining the polyphosphate dynamics. Water Research, 43(17), 4207-4213. doi:10.1016/j.watres.2009.06.011Cabello, J., Toledo-Cervantes, A., Sánchez, L., Revah, S., & Morales, M. (2015). Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresource Technology, 181, 128-135. doi:10.1016/j.biortech.2015.01.034Zhu, W., Wan, L., & Zhao, L. (2010). Effect of nutrient level on phytoplankton community structure in different water bodies. Journal of Environmental Sciences, 22(1), 32-39. doi:10.1016/s1001-0742(09)60071-1Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., & Wagner, M. (1999). The Domain-specific Probe EUB338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a more Comprehensive Probe Set. Systematic and Applied Microbiology, 22(3), 434-444. doi:10.1016/s0723-2020(99)80053-8Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K.-H., & Wagner, M. (2001). In Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Applied and Environmental Microbiology, 67(11), 5273-5284. doi:10.1128/aem.67.11.5273-5284.2001analysis of nitrifying bacteria in sewage treatment plants. (1996). Water Science and Technology, 34(1-2). doi:10.1016/0273-1223(96)00514-

    Behavior of mixed Chlorophyceae cultures under prolonged dark exposure. Respiration rate modeling

    Full text link
    [EN] The behavior of three different microalgal cultures, when exposed for a long period (>48 h) to dark conditions, was studied with a methodology based on respirometry. The cultures were transferred to darkness and the oxygen evolution in the reactors was monitored after successive air injections. Several sequential oxygen uptake rates were thus calculated and a respiration constant, assuming a first order decay of a fraction of the biomass, was obtained by calibration. Initial specific oxygen uptake rates were in the range of 0.9 5.1 mg O2 g TSS−1 h−1 and dark respiration constants in the range of 0.005 0.018 h−1.This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, CTM2011-28595-C02- 01/02) jointly with the European Regional Development Fund (ERDF) which are gratefully acknowledged. This research was also supported by the Spanish Ministry of Science and Innovation via a pre doctoral FPU fellowship to the first author (AP2009-4903). The authors would also like to thank the water management entities of the Generalitat Valenciana (EPSAR).Ruiz Martínez, A.; Serralta Sevilla, J.; Seco Torrecillas, A.; Ferrer, J. (2016). Behavior of mixed Chlorophyceae cultures under prolonged dark exposure. Respiration rate modeling. Ecological Engineering. 91:265-269. https://doi.org/10.1016/j.ecoleng.2016.02.025S2652699

    Explaining the causes of cell death in cyanobacteria: what role for asymmetric division?

    Get PDF
    Cyanobacteria contribute a significant fraction of global primary production and are therefore of great ecological significance. An individual cyanobacteria cell has four potential fates: to divide, perhaps after a dormant period, to be eaten, to undergo viral lysis, or to undergo cell death. In some studies, cyanobacteria cell death has been classified as programmed cell death, borrowing a concept more widely known in metazoan cells, and there are various biochemical parallels to support such a categorisation. However, at the same time there is a growing awareness of asymmetric division as a fundamental process in bacterial division which can result in non-equal daughter cells with differing fitness. Thanks to recent theoretical and experimental advances it is now possible to explore cyanobacteria cell death in the light of asymmetric division and to test hypotheses on the ultimate causes of cyanobacterial cell death. Assessing the degree of protein damage within individual cells during population growth is a sensible initial research target as is the application of techniques which allow the tracking of cell lineages. The existence of asymmetric division in cyanobacteria is likely given its suggested ubiquity across the bacterial domain of life. It will be technically difficult to test the interaction of asymmetric division with environmental variability, and how that leads to individual cell death via differing susceptibilities to environmental stress. However, testing such ideas could confirm asymmetric division as the ultimate cause of cell death in cyanobacteria and thereby allow a better understanding of the patterns of cell death in natural populations
    corecore