311 research outputs found

    Phorcotabanus cinereus (Wiedemann, 1821) (Diptera, Tabanidae), an ornithophilic species of tabanid in Central Amazon, Brazil

    Get PDF
    In Central Amazon, Brazil, the tabanid Phorcotabanus cinereus (Wiedemann) was recorded attacking the native duck Cairina moschata (Linnaeus) (Anseriformes, Anatidae). The flight and behavior of the tabanid during the attacks and the host's defenses were videotaped and analyzed in slow motion. The tabanid was recorded flying rapidly around the heads of the ducks before landing. Landing always took place on the beak, and then the tabanid walked to the fleshy caruncle on the basal part of the beak to bite and feed. Firstly the duck defends itself through lateral harsh head movements, and then, when it is being bitten, it defends itself by rubbing its head on the body, or dipping the head into water, when swimming. If disturbed, the fly resumed the same pattern of flight as before and would generally try to land again on the same host and bite in the same place. This feeding activity was observed predominantly between 9:30 am and 4:30 pm and always in open areas, near aquatic environments, from June 1996 to January 1997, the dry season in Central Amazon. To test the attractiveness of other animals to P. cinereus, mammals, caimans and domestic and wild birds were placed in suitable habitat and the response of V. cinereus observed. P. cinereus did not attack these animals, suggesting that this species has a preference for ducks, which are plentiful in the region

    Candidiasis : predisposing factors, prevention, diagnosis and alternative treatment

    Get PDF
    Candidiasis is the most common opportunistic yeast infection. Candida species and other microorganisms are involved in this complicated fungal infection, but Candida albicans continues to be the most prevalent. In the past two decades, it has been observed an abnormal overgrowth in the gastrointestinal, urinary and respiratory tracts, not only in immunocompromised patients, but also related to nosocomial infections and even in healthy individuals. There is a widely variety of causal factors that contribute to yeast infection which means that candidiasis is a good example of a multifactorial syndrome. Due to rapid increase in the incidence in these infections, this is the subject of numerous studies. Recently, the focus of attention is the treatment and, above all, the prevention of those complications. The diagnosis of candidiasis could become quite complicated. Prevention is the most effective “treatment,” much more than eradication of the yeast with antifungal agents. There are several aspects to consider in the daily routine that can provide a strength protection. However, a therapeutic approach is necessary when the infection is established, and therefore, other alternatives should be explored. This review provides an overview on predisposition factors, prevention and diagnosis of candidiasis, highlighting alternative approaches for candidiasis treatment.The authors are grateful to Foundation for Science and Technology (FCT, Portugal) for N. Martins grant (SFRH/BD/87658/2012), L. Barros researcher contract under "Programa Compromisso com Ciencia-2008'' and financial support to the research center CIMO (strategic project PEst-OE/AGR/UI0690/2011)

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Mapping Proprioception across a 2D Horizontal Workspace

    Get PDF
    Relatively few studies have been reported that document how proprioception varies across the workspace of the human arm. Here we examined proprioceptive function across a horizontal planar workspace, using a new method that avoids active movement and interactions with other sensory modalities. We systematically mapped both proprioceptive acuity (sensitivity to hand position change) and bias (perceived location of the hand), across a horizontal-plane 2D workspace. Proprioception of both the left and right arms was tested at nine workspace locations and in 2 orthogonal directions (left-right and forwards-backwards). Subjects made repeated judgments about the position of their hand with respect to a remembered proprioceptive reference position, while grasping the handle of a robotic linkage that passively moved their hand to each judgement location. To rule out the possibility that the memory component of the proprioceptive testing procedure may have influenced our results, we repeated the procedure in a second experiment using a persistent visual reference position. Both methods resulted in qualitatively similar findings. Proprioception is not uniform across the workspace. Acuity was greater for limb configurations in which the hand was closer to the body, and was greater in a forward-backward direction than in a left-right direction. A robust difference in proprioceptive bias was observed across both experiments. At all workspace locations, the left hand was perceived to be to the left of its actual position, and the right hand was perceived to be to the right of its actual position. Finally, bias was smaller for hand positions closer to the body. The results of this study provide a systematic map of proprioceptive acuity and bias across the workspace of the limb that may be used to augment computational models of sensory-motor control, and to inform clinical assessment of sensory function in patients with sensory-motor deficits

    Antimicrobial Resistance, Virulence Factors and Genetic Diversity of Escherichia coli Isolates from Household Water Supply in Dhaka, Bangladesh

    Get PDF
    Background: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. Methodology/Principal Findings: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for blaCTX-M-15, 7 for blaOXA-1-group(all had blaOXA-47) and 2 for blaCMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. Significance: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas

    Data-driven reverse engineering of signaling pathways using ensembles of dynamic models

    Get PDF
    Signaling pathways play a key role in complex diseases such as cancer, for which the development of novel therapies is a difficult, expensive and laborious task. Computational models that can predict the effect of a new combination of drugs without having to test it experimentally can help in accelerating this process. In particular, network-based dynamic models of these pathways hold promise to both understand and predict the effect of therapeutics. However, their use is currently hampered by limitations in our knowledge of the underlying biochemistry, as well as in the experimental and computational technologies used for calibrating the models. Thus, the results from such models need to be carefully interpreted and used in order to avoid biased predictions. Here we present a procedure that deals with this uncertainty by using experimental data to build an ensemble of dynamic models. The method incorporates steps to reduce overfitting and maximize predictive capability. We find that by combining the outputs of individual models in an ensemble it is possible to obtain a more robust prediction. We report results obtained with this method, which we call SELDOM (enSEmbLe of Dynamic lOgic-based Models), showing that it improves the predictions previously reported for several challenging problems.JRB and DH acknowledge funding from the EU FP7 project NICHE (ITN Grant number 289384). JRB acknowledges funding from the Spanish MINECO project SYNBIOFACTORY (grant number DPI2014-55276-C5-2-R). AFV acknowledges funding from the Galician government (Xunta de Galiza) through the I2C postdoctoral fellowship ED481B2014/133-0. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    A Negative Feedback Loop That Limits the Ectopic Activation of a Cell Type–Specific Sporulation Sigma Factor of Bacillus subtilis

    Get PDF
    Two highly similar RNA polymerase sigma subunits, σF and σG, govern the early and late phases of forespore-specific gene expression during spore differentiation in Bacillus subtilis. σF drives synthesis of σG but the latter only becomes active once engulfment of the forespore by the mother cell is completed, its levels rising quickly due to a positive feedback loop. The mechanisms that prevent premature or ectopic activation of σG while discriminating between σF and σG in the forespore are not fully comprehended. Here, we report that the substitution of an asparagine by a glutamic acid at position 45 of σG (N45E) strongly reduced binding by a previously characterized anti-sigma factor, CsfB (also known as Gin), in vitro, and increased the activity of σG in vivo. The N45E mutation caused the appearance of a sub-population of pre-divisional cells with strong activity of σG. CsfB is normally produced in the forespore, under σF control, but sigGN45E mutant cells also expressed csfB and did so in a σG-dependent manner, autonomously from σF. Thus, a negative feedback loop involving CsfB counteracts the positive feedback loop resulting from ectopic σG activity. N45 is invariant in the homologous position of σG orthologues, whereas its functional equivalent in σF proteins, E39, is highly conserved. While CsfB does not bind to wild-type σF, a E39N substitution in σF resulted in efficient binding of CsfB to σF. Moreover, under certain conditions, the E39N alteration strongly restrains the activity of σF in vivo, in a csfB-dependent manner, and the efficiency of sporulation. Therefore, a single amino residue, N45/E39, is sufficient for the ability of CsfB to discriminate between the two forespore-specific sigma factors in B. subtilis

    Monitoring the Long-Term Molecular Epidemiology of the Pneumococcus and Detection of Potential ‘Vaccine Escape’ Strains

    Get PDF
    While the pneumococcal protein conjugate vaccines reduce the incidence in invasive pneumococcal disease (IPD), serotype replacement remains a major concern. Thus, serotype-independent protection with vaccines targeting virulence genes, such as PspA, have been pursued. PspA is comprised of diverse clades that arose through recombination. Therefore, multi-locus sequence typing (MLST)-defined clones could conceivably include strains from multiple PspA clades. As a result, a method is needed which can both monitor the long-term epidemiology of the pneumococcus among a large number of isolates, and analyze vaccine-candidate genes, such as pspA, for mutations and recombination events that could result in 'vaccine escape' strains.We developed a resequencing array consisting of five conserved and six variable genes to characterize 72 pneumococcal strains. The phylogenetic analysis of the 11 concatenated genes was performed with the MrBayes program, the single nucleotide polymorphism (SNP) analysis with the DNA Sequence Polymorphism program (DnaSP), and the recombination event analysis with the recombination detection package (RDP).The phylogenetic analysis correlated with MLST, and identified clonal strains with unique PspA clades. The DnaSP analysis correlated with the serotype-specific diversity detected using MLST. Serotypes associated with more than one ST complex had a larger degree of sequence polymorphism than a serotype associated with one ST complex. The RDP analysis confirmed the high frequency of recombination events in the pspA gene.The phylogenetic tree correlated with MLST, and detected multiple PspA clades among clonal strains. The genetic diversity of the strains and the frequency of recombination events in the mosaic gene, pspA were accurately assessed using the DnaSP and RDP programs, respectively. These data provide proof-of-concept that resequencing arrays could play an important role within research and clinical laboratories in both monitoring the molecular epidemiology of the pneumococcus and detecting 'vaccine escape' strains among vaccine-candidate genes

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity
    corecore