103 research outputs found

    Climate social science—Any future for ‘blue sky research’ in management studies?

    Get PDF
    Summary The environmental humanities call for post-disciplinary approaches to meet the vexing problem of climate change. However, scholars have not scrutinised how management and organisation studies (MOS) could contribute to such an endeavour. This research note explores common surfaces of contact between the natural and social sciences, with the goal of unravelling the legitimate positions to speak from about climate change. The findings suggest that scholars in MOS are exposed to ecological reasoning, which undergirds underdog heroism, disciplinary confusion and a debasement of political subjectivity. As a counter strategy, I suggest that we affirm a ‘blue-sky research’ approach that would support alternative research paths and a more traditional will to know—to advance ‘climate social science’

    Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes

    Get PDF
    Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems

    Geological suitability and capacity of CO2 storage in the Jiyang Depression, East China

    Get PDF
    Carbon dioxide capture and storage (CCS) is an effective technology to reduce carbon dioxide (CO2) emissions in China. In this paper, the authors considered storage opportunities offered by oil reservoirs and deep saline aquifers in the Jiyang Depression, in east China. Based on detailed geological analysis and assessment of CO2 storage suitability, the Dongying Sag and Linyi‐Shanghe areas of the Huimin Sag within the Jiyang Depression appear promising for CO2 storage. Following more detailed characterization, the second and third members of the Shahejie Formation located in these two areas appear the most promising for CO2 storage. Within the areas identified as having potential for storage, 55 primary and 62 secondary recommended storage units were defined, with a total theoretical capacity of 5.02 × 108 tonnes (t) CO2. This represents storage of CO2 emissions from large‐scale sources in the Jiyang Depression for more than 30 years at current emission rates

    Larger temperature response of autumn leaf senescence than spring leaf-out phenology

    Get PDF
    Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions
    corecore