16 research outputs found

    Effects of climate and land-use changes on fish catches across lakes at a global scale

    Get PDF
    Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security

    Neurophysiologic effects of spinal manipulation in patients with chronic low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is growing evidence for the efficacy of SM to treat LBP, little is known on the mechanisms and physiologic effects of these treatments. Accordingly, the purpose of this study was to determine whether SM alters the amplitude of the motor evoked potential (MEP) or the short-latency stretch reflex of the erector spinae muscles, and whether these physiologic responses depend on whether SM causes an audible joint sound.</p> <p>Methods</p> <p>We used transcranial magnetic stimulation to elicit MEPs and electromechanical tapping to elicit short-latency stretch reflexes in 10 patients with chronic LBP and 10 asymptomatic controls. Neurophysiologic outcomes were measured before and after SM. Changes in MEP and stretch reflex amplitude were examined based on patient grouping (LBP vs. controls), and whether SM caused an audible joint sound.</p> <p>Results</p> <p>SM did not alter the erector spinae MEP amplitude in patients with LBP (0.80 ± 0.33 vs. 0.80 ± 0.30 μV) or in asymptomatic controls (0.56 ± 0.09 vs. 0.57 ± 0.06 μV). Similarly, SM did not alter the erector spinae stretch reflex amplitude in patients with LBP (0.66 ± 0.12 vs. 0.66 ± 0.15 μV) or in asymptomatic controls (0.60 ± 0.09 vs. 0.55 ± 0.08 μV). Interestingly, study participants exhibiting an audible response exhibited a 20% decrease in the stretch reflex (p < 0.05).</p> <p>Conclusions</p> <p>These findings suggest that a single SM treatment does not systematically alter corticospinal or stretch reflex excitability of the erector spinae muscles (when assessed ~ 10-minutes following SM); however, they do indicate that the stretch reflex is attenuated when SM causes an audible response. This finding provides insight into the mechanisms of SM, and suggests that SM that produces an audible response may mechanistically act to decrease the sensitivity of the muscle spindles and/or the various segmental sites of the Ia reflex pathway.</p

    Film tourism – Evolution, progress and prospects

    No full text
    corecore