27 research outputs found

    Immune Evasion by Yersinia enterocolitica: Differential Targeting of Dendritic Cell Subpopulations In Vivo

    Get PDF
    CD4+ T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4+ T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4+ T cells was markedly reduced when cultured with splenic CD8α+ DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4+ or CD4−CD8α− DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α+ DCs, but not in CD4+ and CD4−CD8α− DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α+ DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α+ DCs. Three days post infection with Ye the number of splenic CD8α+ and CD4+ DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4+ and CD8α+ DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye

    Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on Body Mass Index

    Get PDF
    Marja-Liisa Lokki työryhmien Generation Scotland Consortium, LifeLines Cohort Study ja GIANT Consortium jäsenPeer reviewe

    Parkinson's disease: insights from pathways

    No full text
    Parkinson's disease (PD) typically presents in sporadic fashion, but the identification of disease-causing mutations in monogenically inherited PD genes has provided crucial insight into the pathogenesis of this disorder. Mutations in autosomal recessively inherited genes, namely parkin, PINK1 and DJ-1, typically lead to early onset parkinsonism. At least two of these genes (PINK1 and parkin) appear to work in the same pathway related to maintenance of mitochondrial functional integrity under conditions of oxidative stress. Dominantly inherited mutations in leucine-rich repeat kinase 2 (LRRK2) and α-synuclein cause late onset PD, generally with Lewy bodies that are characteristic of sporadic PD and there is evidence that these two genes are also in a common pathway. There is also growing evidence from recently undertaken genome-wide association studies that naturally occurring sequence variants in α-synuclein and LRRK2, but also Tau, also confer an increased risk for late onset, sporadic PD. Collectively, these results highlight how understanding pathways for inherited PD are starting to impact ideas about the pathogenesis, some of which may also be relevant to the commoner sporadic disease

    The fold of α-synuclein fibrils

    No full text
    The aggregation of proteins into amyloid fibrils is associated with several neurodegenerative diseases. In Parkinson's disease it is believed that the aggregation of α-synuclein (α-syn) from monomers by intermediates into amyloid fibrils is the toxic disease-causative mechanism. Here, we studied the structure of α-syn in its amyloid state by using various biophysical approaches. Quenched hydrogen/deuterium exchange NMR spectroscopy identified five β-strands within the fibril core comprising residues 35–96 and solid-state NMR data from amyloid fibrils comprising the fibril core residues 30–110 confirmed the presence of β-sheet secondary structure. The data suggest that β1-strand interacts with β2, β2 with β3, β3 with β4, and β4 with β5. High-resolution cryoelectron microscopy revealed the protofilament boundaries of ≈2 × 3.5 nm. Based on the combination of these data and published structural studies, a fold of α-syn in the fibrils is proposed and discussed

    Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    No full text
    corecore