173 research outputs found
Evolution of the Mass-Metallicity relations in passive and star-forming galaxies from SPH-cosmological simulations
We present results from SPH-cosmological simulations, including
self-consistent modelling of SN feedback and chemical evolution, of galaxies
belonging to two clusters and twelve groups. We reproduce the mass-metallicity
(ZM) relation of galaxies classified in two samples according to their
star-forming activity, as parametrized by their sSFR, across a redshift range
up to z=2.
Its slope shows irrelevant evolution in the passive sample, being steeper in
groups than in clusters. However, the sub-sample of high-mass passive galaxies
only is characterized by a steep increase of the slope with redshift, from
which it can be inferred that the bulk of the slope evolution of the ZM
relation is driven by the more massive passive objects. (...ABRIDGED...)
The ZM relation for the star-forming sample reveals an increasing scatter
with redshift, indicating that it is still being built at early epochs. The
star-forming galaxies make up a tight sequence in the SFR-M_* plane at high
redshift, whose scatter increases with time alongside with the consolidation of
the passive sequence. We also confirm the anti-correlation between sSFR and
stellar mass, pointing at a key role of the former in determining the galaxy
downsizing, as the most significant means of diagnostics of the star formation
efficiency. Likewise, an anti-correlation between sSFR and metallicity can be
established for the star-forming galaxies, while on the contrary more active
galaxies in terms of simple SFR are also metal-richer.
We discuss these results in terms of the mechanisms driving the evolution
within the high- and low-mass regimes at different epochs: mergers,
feedback-driven outflows and the intrinsic variation of the star formation
efficiency.Comment: Emended list of author
A study on the multicolour evolution of Red Sequence galaxy populations: insights from hydrodynamical simulations and semi-analytical models
By means of our own cosmological-hydrodynamical simulation and
semi-analytical model we studied galaxy population properties in clusters and
groups, spanning over 10 different bands from UV to NIR, and their evolution
since redshift z=2. We compare our results in terms of galaxy red/blue
fractions and luminous-to-faint ratio (LFR) on the Red Sequence (RS) with
recent observational data reaching beyond z=1.5. Different selection criteria
were tested in order to retrieve galaxies belonging to the RS: either by their
quiescence degree measured from their specific SFR ("Dead Sequence"), or by
their position in a colour-colour plane which is also a function of sSFR. In
both cases, the colour cut and the limiting magnitude threshold were let
evolving with redshift, in order to follow the natural shift of the
characteristic luminosity in the LF.
We find that the Butcher-Oemler effect is wavelength-dependent, with the
fraction of blue galaxies increasing steeper in optical colours than in NIR.
Besides, only when applying a lower limit in terms of fixed absolute magnitude,
a steep BO effect can be reproduced, while the blue fraction results less
evolving when selecting samples by stellar mass or an evolving magnitude limit.
We then find that also the RS-LFR behaviour, highly debated in the literature,
is strongly dependent on the galaxy selection function: in particular its very
mild evolution recovered when measured in terms of stellar mass, is in
agreement with values reported for some of the highest redshift confirmed
(proto)clusters. As to differences through environments, we find that normal
groups and (to a lesser extent) cluster outskirts present the highest values of
both star forming fraction and LFR at low z, while fossil groups and cluster
cores the lowest: this separation among groups begins after z~0.5, while
earlier all group star forming properties are undistinguishable.Comment: revised version, A&A accepted (11 pages, 6 figures
The cosmic growth of the active black hole population at 1<z<2 in zCOSMOS, VVDS and SDSS
We present a census of the active black hole population at 1<z<2, by
constructing the bivariate distribution function of black hole mass and
Eddington ratio, employing a maximum likelihood fitting technique. The study of
the active black hole mass function (BHMF) and the Eddington ratio distribution
function (ERDF) allows us to clearly disentangle the active galactic nuclei
(AGN) downsizing phenomenon, present in the AGN luminosity function, into its
physical processes of black hole mass downsizing and accretion rate evolution.
We are utilizing type-1 AGN samples from three optical surveys (VVDS, zCOSMOS
and SDSS), that cover a wide range of 3 dex in luminosity over our redshift
interval of interest. We investigate the cosmic evolution of the AGN population
as a function of AGN luminosity, black hole mass and accretion rate. Compared
to z = 0, we find a distinct change in the shape of the BHMF and the ERDF,
consistent with downsizing in black hole mass. The active fraction or duty
cycle of type-1 AGN at z~1.5 is almost flat as a function of black hole mass,
while it shows a strong decrease with increasing mass at z=0. We are witnessing
a phase of intense black hole growth, which is largely driven by the onset of
AGN activity in massive black holes towards z=2. We finally compare our results
to numerical simulations and semi-empirical models and while we find reasonable
agreement over certain parameter ranges, we highlight the need to refine these
models in order to match our observations.Comment: 31 pages, 28 figures, accepted for publication in MNRA
Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. II. Extending the mass-metallicity relation to the range z=0.89-1.24
Aims. We present a continuation of our study about the relation between
stellar mass and gas-phase metallicity in the VIMOS VLT Deep Survey (VVDS). In
this work we extend the determination of metallicities up to redshift = 1.24
for a sample of 42 star-forming galaxies with a mean redshift value of 0.99.
Methods. For a selected sample of emission-line galaxies, we use both
diagnostic diagrams and empirical calibrations based on [OII] emission lines
along with the empirical relation between the intensities of the [OIII] and
[NeIII] emission lines and the theoretical ratios between Balmer recombination
emission lines to identify star-forming galaxies and to derive their
metallicities. We derive stellar masses by fitting the whole spectral energy
distribution with a set of stellar population synthesis models. Results. These
new methods allow us to extend the mass-metallicity relation to higher
redshift. We show that the metallicity determinations are consistent with more
established strong-line methods. Taken together this allows us to study the
evolution of the mass-metallicity relation up to z = 1.24 with good control of
systematic uncertainties. We find an evolution with redshift of the average
metallicity of galaxies very similar to those reported in the literature: for a
given stellar mass, galaxies at z = 1 have, on average, a metallicity = 0.3 dex
lower than galaxies in the local universe. However we do not see any
significant metallicity evolution between redshifts z = 0.7 (Paper I) and z =
1.0 (this paper). We find also the same flattening of the mass-metallicity
relation for the most massive galaxies as reported in Paper I at lower
redshifts, but again no apparent evolution of the slope is seen between z = 0.7
and z = 1.0.Comment: 9 pages and 8 figures. In press in Astronomy & Astrophysic
The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme
Our goal is to characterize AGN populations by comparing their X-ray and
optical classifications. We present a sample of 99 spectroscopically identified
X-ray point sources in the XMM-LSS survey which are significantly detected in
the [2-10] keV band, and with more than 80 counts. We performed an X-ray
spectral analysis for all of these 99 X-ray sources. Introducing the fourfold
point correlation coefficient, we find only a mild correlation between the
X-ray and the optical classifications, as up to 30% of the sources have
differing X-ray and optical classifications: on one hand, 10% of the type 1
sources present broad emission lines in their optical spectra and strong
absorption in the X-rays. These objects are highly luminous AGN lying at high
redshift and thus dilution effects are totally ruled out, their discrepant
nature being an intrinsic property. Their X-ray luminosities and redshifts
distributions are consistent with those of the unabsorbed X-ray sources with
broad emission lines. On the other hand, 25/32 are moderate luminosity AGN,
which are both unabsorbed in the X-rays and only present narrow emission lines
in their optical spectra. The majority of them have an optical spectrum which
is representative of the host galaxy. We finally infer that dilution of the AGN
by the host galaxy seems to account for their nature. 5/25 have been defined as
Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted
for by the standard AGN unified scheme, as its predictions are not met for only
12% of the 99 X-ray sources. ABRIDGEDComment: 25 pages, 19 figures, Accepted for publication in A&
The VIMOS Integral Field Unit: data reduction methods and quality assessment
With new generation spectrographs integral field spectroscopy is becoming a
widely used observational technique. The Integral Field Unit of the VIsible
Multi-Object Spectrograph on the ESO-VLT allows to sample a field as large as
54" x 54" covered by 6400 fibers coupled with micro-lenses. We are presenting
here the methods of the data processing software developed to extract the
astrophysical signal of faint sources from the VIMOS IFU observations. We focus
on the treatment of the fiber-to-fiber relative transmission and the sky
subtraction, and the dedicated tasks we have built to address the peculiarities
and unprecedented complexity of the dataset. We review the automated process we
have developed under the VIPGI data organization and reduction environment
(Scodeggio et al. 2005), along with the quality control performed to validate
the process. The VIPGI-IFU data processing environment is available to the
scientific community to process VIMOS-IFU data since November 2003.Comment: 19 pages, 10 figures and 1 table. Accepted for publication in PAS
The VVDS data reduction pipeline: introducing VIPGI, the VIMOS Interactive Pipeline and Graphical Interface
The VIMOS VLT Deep Survey (VVDS), designed to measure 150,000 galaxy
redshifts, requires a dedicated data reduction and analysis pipeline to process
in a timely fashion the large amount of spectroscopic data being produced. This
requirement has lead to the development of the VIMOS Interactive Pipeline and
Graphical Interface (VIPGI), a new software package designed to simplify to a
very high degree the task of reducing astronomical data obtained with VIMOS,
the imaging spectrograph built by the VIRMOS Consortium for the European
Southern Observatory, and mounted on Unit 3 (Melipal) of the Very Large
Telescope (VLT) at Paranal Observatory (Chile). VIPGI provides the astronomer
with specially designed VIMOS data reduction functions, a VIMOS-centric data
organizer, and dedicated data browsing and plotting tools, that can be used to
verify the quality and accuracy of the various stages of the data reduction
process. The quality and accuracy of the data reduction pipeline are comparable
to those obtained using well known IRAF tasks, but the speed of the data
reduction process is significantly increased, thanks to the large set of
dedicated features. In this paper we discuss the details of the MOS data
reduction pipeline implemented in VIPGI, as applied to the reduction of some
20,000 VVDS spectra, assessing quantitatively the accuracy of the various
reduction steps. We also provide a more general overview of VIPGI capabilities,
a tool that can be used for the reduction of any kind of VIMOS data.Comment: 10 pages, submitted to Astronomy and Astrophysic
The VIMOS VLT Deep Survey - First epoch VVDS-Deep survey: 11564 spectra with 17.5<=IAB<=24, and the redshift distribution over 0< z <=5
This paper presents the ``First Epoch'' sample from the VIMOS VLT Deep Survey
(VVDS). The VVDS goals, observations, data reduction with VIPGI, and redshift
measurement with KBRED are discussed. Data have been obtained with the VIsible
Multi Object Spectrograph (VIMOS) on the ESO-VLT UT3, allowing to observe ~600
slits simultaneously at R~230. A total of 11564 objects have been observed in
the VVDS-02h and VVDS-CDFS Deep fields over a total area of 0.61deg^2, selected
solely on the basis of apparent magnitude 17.5 <=I_{AB} <=24. The VVDS covers
the redshift range 0 < z <= 5. It is successfully going through the ``redshift
desert'' 1.5<z<2.2, while the range 2.2<z<2.7 remains of difficult access
because of the VVDS wavelength coverage.A total of 9677 galaxies have a
redshift measurement, 836 are stars, 90 are AGNs, and a redshift could not be
measured for 961 objects. There are 1065 galaxies with a measured redshift
z>1.4. The survey reaches a redshift measurement completeness of 78% overall
(93% including less reliable objects), with a spatial sampling of the
population of galaxies of 25% and ~30% in the VVDS-02h and VVDS-CDFS. The
redshift accuracy measured from repeated observations with VIMOS and comparison
to other surveys is ~276km/s. From this sample we present for the first time
the redshift distribution of a magnitude limited spectroscopic sample down to
IAB=24. The redshift distribution has a median of z=0.62, z=0.65, z=0.70, and
z=0.76, for magnitude limited samples with IAB<=22.5, 23, 23.5, and 24. A high
redshift tail above redshift 2 and up to redshift 5 becomes readily apparent
for IAB>23.5, probing the bright star forming population of galaxies. This
sample provides an unprecedented dataset to study galaxy evolution over 90% of
the life of the universeComment: 30 pages, accepted 22-Feb-05 in A&
The VIMOS-VLT Deep Survey - The evolution of galaxy clustering per spectral type to z~1.5
We measure the evolution of clustering for galaxies with different spectral
types from 6495 galaxies with 17.5<=I_AB<=24 and measured spectroscopic
redshift in the first epoch VIMOS-VLT Deep Survey. We classify our sample into
4 classes, based on the fit of well-defined galaxy spectral energy
distributions on observed multi-color data. We measure the projected function
wp(rp) and estimate the best-fit parameters for a power-law real-space
correlation function. We find the clustering of early-spectral-type galaxies to
be markedly stronger than that of late-type galaxies at all redshifts up to
z<=1.2. At z~0.8, early-type galaxies display a correlation length
r_0=4.8+/-0.9h^{-1}Mpc, while late types have r_0=2.5+/-0.4h^{-1}Mpc. The
clustering of these objects increases up to r_0=3.42+/-0.7h^{-1}Mpc for z~1.4.
The relative bias between early- and late-type galaxies within our
magnitude-limited survey remains approximately constant with b~1.7-1.8 from
z~=0.2 up to z~=1, with indications for a decrease at z>1.2, due to the growth
in clustering of the star-forming population. We find similar results when
splitting the sample into `red' and `blue' galaxies using the observed color
bi-modality. When compared to the expected linear growth of mass fluctuations,
a natural interpretation of these observations is that: (a) the assembly of
massive early type galaxies is already mostly complete in the densest dark
matter halos at z~=1; (b) luminous late-type galaxies are located in
higher-density, more clustered regions of the Universe at z~=1.5 than at
present, indicating that star formation activity is progressively increasing,
going back in time, in the higher-density peaks that today are mostly dominated
by old galaxies.Comment: 12 pages, Accepted on 11-Feb-06 for publication in Astronomy and
Astrophysic
- …
