173 research outputs found

    Evolution of the Mass-Metallicity relations in passive and star-forming galaxies from SPH-cosmological simulations

    Full text link
    We present results from SPH-cosmological simulations, including self-consistent modelling of SN feedback and chemical evolution, of galaxies belonging to two clusters and twelve groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming activity, as parametrized by their sSFR, across a redshift range up to z=2. Its slope shows irrelevant evolution in the passive sample, being steeper in groups than in clusters. However, the sub-sample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. (...ABRIDGED...) The ZM relation for the star-forming sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The star-forming galaxies make up a tight sequence in the SFR-M_* plane at high redshift, whose scatter increases with time alongside with the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the star-forming galaxies, while on the contrary more active galaxies in terms of simple SFR are also metal-richer. We discuss these results in terms of the mechanisms driving the evolution within the high- and low-mass regimes at different epochs: mergers, feedback-driven outflows and the intrinsic variation of the star formation efficiency.Comment: Emended list of author

    A study on the multicolour evolution of Red Sequence galaxy populations: insights from hydrodynamical simulations and semi-analytical models

    Get PDF
    By means of our own cosmological-hydrodynamical simulation and semi-analytical model we studied galaxy population properties in clusters and groups, spanning over 10 different bands from UV to NIR, and their evolution since redshift z=2. We compare our results in terms of galaxy red/blue fractions and luminous-to-faint ratio (LFR) on the Red Sequence (RS) with recent observational data reaching beyond z=1.5. Different selection criteria were tested in order to retrieve galaxies belonging to the RS: either by their quiescence degree measured from their specific SFR ("Dead Sequence"), or by their position in a colour-colour plane which is also a function of sSFR. In both cases, the colour cut and the limiting magnitude threshold were let evolving with redshift, in order to follow the natural shift of the characteristic luminosity in the LF. We find that the Butcher-Oemler effect is wavelength-dependent, with the fraction of blue galaxies increasing steeper in optical colours than in NIR. Besides, only when applying a lower limit in terms of fixed absolute magnitude, a steep BO effect can be reproduced, while the blue fraction results less evolving when selecting samples by stellar mass or an evolving magnitude limit. We then find that also the RS-LFR behaviour, highly debated in the literature, is strongly dependent on the galaxy selection function: in particular its very mild evolution recovered when measured in terms of stellar mass, is in agreement with values reported for some of the highest redshift confirmed (proto)clusters. As to differences through environments, we find that normal groups and (to a lesser extent) cluster outskirts present the highest values of both star forming fraction and LFR at low z, while fossil groups and cluster cores the lowest: this separation among groups begins after z~0.5, while earlier all group star forming properties are undistinguishable.Comment: revised version, A&A accepted (11 pages, 6 figures

    The cosmic growth of the active black hole population at 1<z<2 in zCOSMOS, VVDS and SDSS

    Get PDF
    We present a census of the active black hole population at 1<z<2, by constructing the bivariate distribution function of black hole mass and Eddington ratio, employing a maximum likelihood fitting technique. The study of the active black hole mass function (BHMF) and the Eddington ratio distribution function (ERDF) allows us to clearly disentangle the active galactic nuclei (AGN) downsizing phenomenon, present in the AGN luminosity function, into its physical processes of black hole mass downsizing and accretion rate evolution. We are utilizing type-1 AGN samples from three optical surveys (VVDS, zCOSMOS and SDSS), that cover a wide range of 3 dex in luminosity over our redshift interval of interest. We investigate the cosmic evolution of the AGN population as a function of AGN luminosity, black hole mass and accretion rate. Compared to z = 0, we find a distinct change in the shape of the BHMF and the ERDF, consistent with downsizing in black hole mass. The active fraction or duty cycle of type-1 AGN at z~1.5 is almost flat as a function of black hole mass, while it shows a strong decrease with increasing mass at z=0. We are witnessing a phase of intense black hole growth, which is largely driven by the onset of AGN activity in massive black holes towards z=2. We finally compare our results to numerical simulations and semi-empirical models and while we find reasonable agreement over certain parameter ranges, we highlight the need to refine these models in order to match our observations.Comment: 31 pages, 28 figures, accepted for publication in MNRA

    Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. II. Extending the mass-metallicity relation to the range z=0.89-1.24

    Full text link
    Aims. We present a continuation of our study about the relation between stellar mass and gas-phase metallicity in the VIMOS VLT Deep Survey (VVDS). In this work we extend the determination of metallicities up to redshift = 1.24 for a sample of 42 star-forming galaxies with a mean redshift value of 0.99. Methods. For a selected sample of emission-line galaxies, we use both diagnostic diagrams and empirical calibrations based on [OII] emission lines along with the empirical relation between the intensities of the [OIII] and [NeIII] emission lines and the theoretical ratios between Balmer recombination emission lines to identify star-forming galaxies and to derive their metallicities. We derive stellar masses by fitting the whole spectral energy distribution with a set of stellar population synthesis models. Results. These new methods allow us to extend the mass-metallicity relation to higher redshift. We show that the metallicity determinations are consistent with more established strong-line methods. Taken together this allows us to study the evolution of the mass-metallicity relation up to z = 1.24 with good control of systematic uncertainties. We find an evolution with redshift of the average metallicity of galaxies very similar to those reported in the literature: for a given stellar mass, galaxies at z = 1 have, on average, a metallicity = 0.3 dex lower than galaxies in the local universe. However we do not see any significant metallicity evolution between redshifts z = 0.7 (Paper I) and z = 1.0 (this paper). We find also the same flattening of the mass-metallicity relation for the most massive galaxies as reported in Paper I at lower redshifts, but again no apparent evolution of the slope is seen between z = 0.7 and z = 1.0.Comment: 9 pages and 8 figures. In press in Astronomy & Astrophysic

    The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme

    Full text link
    Our goal is to characterize AGN populations by comparing their X-ray and optical classifications. We present a sample of 99 spectroscopically identified X-ray point sources in the XMM-LSS survey which are significantly detected in the [2-10] keV band, and with more than 80 counts. We performed an X-ray spectral analysis for all of these 99 X-ray sources. Introducing the fourfold point correlation coefficient, we find only a mild correlation between the X-ray and the optical classifications, as up to 30% of the sources have differing X-ray and optical classifications: on one hand, 10% of the type 1 sources present broad emission lines in their optical spectra and strong absorption in the X-rays. These objects are highly luminous AGN lying at high redshift and thus dilution effects are totally ruled out, their discrepant nature being an intrinsic property. Their X-ray luminosities and redshifts distributions are consistent with those of the unabsorbed X-ray sources with broad emission lines. On the other hand, 25/32 are moderate luminosity AGN, which are both unabsorbed in the X-rays and only present narrow emission lines in their optical spectra. The majority of them have an optical spectrum which is representative of the host galaxy. We finally infer that dilution of the AGN by the host galaxy seems to account for their nature. 5/25 have been defined as Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted for by the standard AGN unified scheme, as its predictions are not met for only 12% of the 99 X-ray sources. ABRIDGEDComment: 25 pages, 19 figures, Accepted for publication in A&

    The VIMOS Integral Field Unit: data reduction methods and quality assessment

    Get PDF
    With new generation spectrographs integral field spectroscopy is becoming a widely used observational technique. The Integral Field Unit of the VIsible Multi-Object Spectrograph on the ESO-VLT allows to sample a field as large as 54" x 54" covered by 6400 fibers coupled with micro-lenses. We are presenting here the methods of the data processing software developed to extract the astrophysical signal of faint sources from the VIMOS IFU observations. We focus on the treatment of the fiber-to-fiber relative transmission and the sky subtraction, and the dedicated tasks we have built to address the peculiarities and unprecedented complexity of the dataset. We review the automated process we have developed under the VIPGI data organization and reduction environment (Scodeggio et al. 2005), along with the quality control performed to validate the process. The VIPGI-IFU data processing environment is available to the scientific community to process VIMOS-IFU data since November 2003.Comment: 19 pages, 10 figures and 1 table. Accepted for publication in PAS

    The VVDS data reduction pipeline: introducing VIPGI, the VIMOS Interactive Pipeline and Graphical Interface

    Get PDF
    The VIMOS VLT Deep Survey (VVDS), designed to measure 150,000 galaxy redshifts, requires a dedicated data reduction and analysis pipeline to process in a timely fashion the large amount of spectroscopic data being produced. This requirement has lead to the development of the VIMOS Interactive Pipeline and Graphical Interface (VIPGI), a new software package designed to simplify to a very high degree the task of reducing astronomical data obtained with VIMOS, the imaging spectrograph built by the VIRMOS Consortium for the European Southern Observatory, and mounted on Unit 3 (Melipal) of the Very Large Telescope (VLT) at Paranal Observatory (Chile). VIPGI provides the astronomer with specially designed VIMOS data reduction functions, a VIMOS-centric data organizer, and dedicated data browsing and plotting tools, that can be used to verify the quality and accuracy of the various stages of the data reduction process. The quality and accuracy of the data reduction pipeline are comparable to those obtained using well known IRAF tasks, but the speed of the data reduction process is significantly increased, thanks to the large set of dedicated features. In this paper we discuss the details of the MOS data reduction pipeline implemented in VIPGI, as applied to the reduction of some 20,000 VVDS spectra, assessing quantitatively the accuracy of the various reduction steps. We also provide a more general overview of VIPGI capabilities, a tool that can be used for the reduction of any kind of VIMOS data.Comment: 10 pages, submitted to Astronomy and Astrophysic

    The VIMOS VLT Deep Survey - First epoch VVDS-Deep survey: 11564 spectra with 17.5<=IAB<=24, and the redshift distribution over 0< z <=5

    Get PDF
    This paper presents the ``First Epoch'' sample from the VIMOS VLT Deep Survey (VVDS). The VVDS goals, observations, data reduction with VIPGI, and redshift measurement with KBRED are discussed. Data have been obtained with the VIsible Multi Object Spectrograph (VIMOS) on the ESO-VLT UT3, allowing to observe ~600 slits simultaneously at R~230. A total of 11564 objects have been observed in the VVDS-02h and VVDS-CDFS Deep fields over a total area of 0.61deg^2, selected solely on the basis of apparent magnitude 17.5 <=I_{AB} <=24. The VVDS covers the redshift range 0 < z <= 5. It is successfully going through the ``redshift desert'' 1.5<z<2.2, while the range 2.2<z<2.7 remains of difficult access because of the VVDS wavelength coverage.A total of 9677 galaxies have a redshift measurement, 836 are stars, 90 are AGNs, and a redshift could not be measured for 961 objects. There are 1065 galaxies with a measured redshift z>1.4. The survey reaches a redshift measurement completeness of 78% overall (93% including less reliable objects), with a spatial sampling of the population of galaxies of 25% and ~30% in the VVDS-02h and VVDS-CDFS. The redshift accuracy measured from repeated observations with VIMOS and comparison to other surveys is ~276km/s. From this sample we present for the first time the redshift distribution of a magnitude limited spectroscopic sample down to IAB=24. The redshift distribution has a median of z=0.62, z=0.65, z=0.70, and z=0.76, for magnitude limited samples with IAB<=22.5, 23, 23.5, and 24. A high redshift tail above redshift 2 and up to redshift 5 becomes readily apparent for IAB>23.5, probing the bright star forming population of galaxies. This sample provides an unprecedented dataset to study galaxy evolution over 90% of the life of the universeComment: 30 pages, accepted 22-Feb-05 in A&

    The VIMOS-VLT Deep Survey - The evolution of galaxy clustering per spectral type to z~1.5

    Full text link
    We measure the evolution of clustering for galaxies with different spectral types from 6495 galaxies with 17.5<=I_AB<=24 and measured spectroscopic redshift in the first epoch VIMOS-VLT Deep Survey. We classify our sample into 4 classes, based on the fit of well-defined galaxy spectral energy distributions on observed multi-color data. We measure the projected function wp(rp) and estimate the best-fit parameters for a power-law real-space correlation function. We find the clustering of early-spectral-type galaxies to be markedly stronger than that of late-type galaxies at all redshifts up to z<=1.2. At z~0.8, early-type galaxies display a correlation length r_0=4.8+/-0.9h^{-1}Mpc, while late types have r_0=2.5+/-0.4h^{-1}Mpc. The clustering of these objects increases up to r_0=3.42+/-0.7h^{-1}Mpc for z~1.4. The relative bias between early- and late-type galaxies within our magnitude-limited survey remains approximately constant with b~1.7-1.8 from z~=0.2 up to z~=1, with indications for a decrease at z>1.2, due to the growth in clustering of the star-forming population. We find similar results when splitting the sample into `red' and `blue' galaxies using the observed color bi-modality. When compared to the expected linear growth of mass fluctuations, a natural interpretation of these observations is that: (a) the assembly of massive early type galaxies is already mostly complete in the densest dark matter halos at z~=1; (b) luminous late-type galaxies are located in higher-density, more clustered regions of the Universe at z~=1.5 than at present, indicating that star formation activity is progressively increasing, going back in time, in the higher-density peaks that today are mostly dominated by old galaxies.Comment: 12 pages, Accepted on 11-Feb-06 for publication in Astronomy and Astrophysic
    corecore