154 research outputs found
Recommended from our members
Is global ozone recovering?
Thanks to the Montreal Protocol, the stratospheric concentrations of ozone-depleting chlorine and bromine have been declining since their peak in the late 1990s. Global ozone has responded: The substantial ozone decline observed since the 1960s ended in the late 1990s. Since then, ozone levels have remained low, but have not declined further. Now general ozone increases and a slow recovery of the ozone layer is expected. The clearest signs of increasing ozone, so far, are seen in the upper stratosphere and for total ozone columns above Antarctica in spring. These two regions had also seen the largest ozone depletions in the past. Total column ozone at most latitudes, however, does not show clear increases yet. This is not unexpected, because the removal of chlorine and bromine from the stratosphere is three to four times slower than their previous increase. Detecting significant increases in total column ozone, therefore, will require much more time than the detection of its previous decline. The search is complicated by variations in ozone that are not caused by declining chlorine or bromine, but are due, e.g., to transport changes in the global Brewer–Dobson circulation. Also, very accurate observations are necessary to detect the expected small increases. Nevertheless, observations and model simulations indicate that the stratosphere is on the path to ozone recovery. This recovery process will take many decades. As chlorine and bromine decline, other factors will become more important. These include climate change and its effects on stratospheric temperatures, changes in the Brewer–Dobson circulation (both due to increasing CO2), increasing emissions of trace gases like N2O, CH4, possibly large future increases of short-lived substances (like CCl2H2) from both natural and anthropogenic sources, and changes in tropospheric ozone
Therapeutic and educational objectives in robot assisted play for children with autism
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio
Ozone anomalies in the free troposphere during the COVID-19 pandemic
Using the CAM-chem Model, we simulate the response of chemical species in the free troposphere to scenarios of primary pollutant emission reductions during the COVID-19 pandemic. Zonally averaged ozone in the free troposphere during Northern Hemisphere spring and summer is found to be 5%-15% lower than 19-yr climatological values, in good agreement with observations. About one third of this anomaly is attributed to the reduction scenario of air traffic during the pandemic, another third to the reduction scenario of surface emissions, the remainder to 2020 meteorological conditions, including the exceptional springtime Arctic stratospheric ozone depletion. For the combined emission reductions, the overall COVID-19 reduction in northern hemisphere tropospheric ozone in June is less than 5 ppb below 400 hPa, but reaches 8 ppb at 250 hPa. In the Southern Hemisphere, COVID-19 related ozone reductions by 4%-6% were masked by comparable ozone increases due to other changes in 2020
Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)
The long-term evolution of upper stratospheric ozone has been recorded by lidars and
microwave radiometers within the ground-based Network for the Detection of
Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet
instruments (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE), and Halogen
Occultation Experiment (HALOE). Climatological mean differences between these
instruments are typically smaller than 5% between 25 and 50 km. Ozone anomaly time
series from all instruments, averaged from 35 to 45 km altitude, track each other very
well and typically agree within 3 to 5%. SBUV seems to have a slight positive drift against
the other instruments. The corresponding 1979 to 1999 period from a transient simulation
by the fully coupled MAECHAM4-CHEM chemistry climate model reproduces many
features of the observed anomalies. However, in the upper stratosphere the model shows
too low ozone values and too negative ozone trends, probably due to an underestimation of
methane and a consequent overestimation of ClO. The combination of all observational
data sets provides a very consistent picture, with a long-term stability of 2% or better.
Upper stratospheric ozone shows three main features: (1) a decline by 10 to 15% since
1980, due to chemical destruction by chlorine; (2) two to three year fluctuations by 5 to
10%, due to the Quasi-Biennial Oscillation (QBO); (3) an 11-year oscillation by about
5%, due to the 11-year solar cycle. The 1979 to 1997 ozone trends are larger at the southern
mid-latitude station Lauder (45 S), reaching 8%/decade, compared to only about
6%/decade at Table Mountain (35 N), Haute Provence/Bordeaux ( 45 N), and
Hohenpeissenberg/Bern( 47 N). At Lauder, Hawaii (20 N), Table Mountain, and Haute
Provence, ozone residuals after subtraction of QBO- and solar cycle effects have levelled
off in recent years, or are even increasing. Assuming a turning point in January 1997,
the change of trend is largest at southern mid-latitude Lauder, +11%/decade, compared to
+7%/decade at northern mid-latitudes. This points to a beginning recovery of upper
stratospheric ozone. However, chlorine levels are still very high and ozone will remain
vulnerable. At this point the most northerly mid-latitude station, Hohenpeissenberg/Bern
differs from the other stations, and shows much less clear evidence for a beginning
recovery, with a change of trend in 1997 by only +3%/decade. In fact, record low upper
stratospheric ozone values were observed at Hohenpeissenberg/Bern, and to a lesser degree
at Table Mountain and Haute Provence, in the winters 2003/2004 and 2004/2005
Chapter 4: The LOTUS regression model
One of the primary motivations of the LOTUS effort is to attempt to reconcile the discrepancies in ozone trend results from the wealth of literature on the subject. Doing so requires investigating the various methodologies employed to derive long-term trends in ozone as well as to examine the large array of possible variables that feed into those methodologies and analyse their impacts on potential trend results. Given the limited amount of time, the LOTUS group focused on the most common methodology of multiple linear regression and performed a number of sensitivity tests with the goal of trying to establish best practices and come to a consensus on a single regression model to use for this study. This chapter discusses the details and results of the sensitivity tests before describing the components of the final single model that was chosen and the reasons for that choice
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends
This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-15-9965-2015Abstract. Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere (as measured by equivalent effective stratospheric chlorine – EESC) was maximised in the second half of the 1990s. We examine the periods before and after the peak to see if any change in trend is discernible in the ozone record that might be attributable to a change in the EESC trend, though no attribution is attempted. Prior to 1998, trends in the upper stratosphere (~ 45 km, 4 hPa) are found to be −5 to −10 % per decade at mid-latitudes and closer to −5 % per decade in the tropics. No trends are found in the mid-stratosphere (28 km, 30 hPa). Negative trends are seen in the lower stratosphere at mid-latitudes in both hemispheres and in the deep tropics. However, it is hard to be categorical about the trends in the lower stratosphere for three reasons: (i) there are fewer measurements, (ii) the data quality is poorer, and (iii) the measurements in the 1990s are perturbed by aerosols from the Mt Pinatubo eruption in 1991. These findings are similar to those reported previously even though the measurements for the main satellite and ground-based records have been revised. There is no sign of a continued negative trend in the upper stratosphere since 1998: instead there is a hint of an average positive trend of ~ 2 % per decade in mid-latitudes and ~ 3 % per decade in the tropics. The significance of these upward trends is investigated using different assumptions of the independence of the trend estimates found from different data sets. The averaged upward trends are significant if the trends derived from various data sets are assumed to be independent (as in Pawson et al., 2014) but are generally not significant if the trends are not independent. This occurs because many of the underlying measurement records are used in more than one merged data set. At this point it is not possible to say which assumption is best. Including an estimate of the drift of the overall ozone observing system decreases the significance of the trends. The significance will become clearer as (i) more years are added to the observational record, (ii) further improvements are made to the historic ozone record (e.g. through algorithm development), and (iii) the data merging techniques are refined, particularly through a more rigorous treatment of uncertainties.
The support of SPARC, IO3C, IGACO-O3 and NDACC was essential to the success of
the initiative. Neil Harris thanks the UK Natural Environment Research Council for an Advanced
Research Fellowship. Work at the Jet Propulsion Laboratory was performed under contract
with the National Aeronautics and Space Administration. Measurements at Lauder are core funded through New Zealand’s
Ministry of Business, Innovation and Employment, while those at Woolongong are supported
by the Australian Research Council
Alarm Pheromones and Chemical Communication in Nymphs of the Tropical Bed Bug Cimex hemipterus (Hemiptera: Cimicidae)
The recent resurge of bed bug infestations (Cimex spp.; Cimicidae) and their resistance to commonly used pesticides calls for alternative methods of control. Pheromones play an important role in environmentally sustainable methods for the management of many pest insects and may therefore be applicable for the control of bed bugs. The tropical bed bug, Cimex hemipterus, is a temporary ectoparasite on humans and causes severe discomfort. Compared to the common bed bug, Cimex lectularius, little is known about the chemical signalling and pheromone-based behaviour of the tropical species. Here, we show that the antennal morphology and volatile emission of C. hemipterus closely resembles those of C. lectularius and we test their behavioural responses to conspecific odour emissions. Two major volatiles are emitted by male, female and nymph C. hemipterus under stress, (E)-2-hexenal and (E)-2-octenal. Notably, nymph emissions show contrasting ratios of these compounds to adults and are further characterized by the addition of 4-oxo-(E)-2-hexenal and 4-oxo-(E)-2-octenal. The discovery of this nymph pheromone in C. hemipterus is potentially the cause of a repellent effect observed in the bio-tests, where nymph odours induce a significantly stronger repellent reaction in conspecifics than adult odours. Our results suggest that pheromone-based pest control methods developed for C. lectularius could be applicable to C. hemipterus, with the unique nymph blend showing promising practical properties
NDSC Intercomparison of Stratospheric Aerosol Processing Algorithms
Scattering ratios R processed from the same raw data at 353 and 532 nm by different lidar groups agree within about 10 % for high and within about 4 % for low aerosol loading. In the main layer aerosol backscatter coefficients agree within about 30 % for high and within about 40 % for low aerosol loadingPublishedBerlin, Germany1.8. Osservazioni di geofisica ambientaleope
- …