754 research outputs found

    Testing times: on model-driven test generation for non-deterministic real-time systems

    Get PDF
    Summary form only given. Although testing has always been the most important technique for the validation of software systems it has only become a topic of serious academic research in the past decade or so. In this period research on the use of formal methods for model-driven test generation and execution of functional test cases has led to a number of promising methods and tools for systematic black-box testing of systems, examples are based on A. Belinfante et al. (1999), J. Tretmans and E. Brinksma (2003), J.-C. Fernandez et al. (1996) and J.-C. Fernandez et al. (1997). Most of these approaches are limited to the qualitative behaviour of systems, and exclude quantitative aspects such as real-time properties. The explosive growth of embedded software, however, has also caused a growing need to extend existing testing theories to the testing of real-time reactive systems. In our presentation we present an extension of Tretmans' ioco theory for test generation as stated in J. Tretmans (1996) for input/output transition systems that includes real-time behaviour

    Behavioural hybrid process calculus

    Get PDF
    Process algebra is a theoretical framework for the modelling and analysis of the behaviour of concurrent discrete event systems that has been developed within computer science in past quarter century. It has generated a deeper nderstanding of the nature of concepts such as observable behaviour in the presence of nondeterminism, system composition by interconnection of concurrent component systems, and notions of behavioural equivalence of such systems. It has contributed fundamental concepts such as bisimulation, and has been successfully used in a wide range of problems and practical applications in concurrent systems. We believe that the basic tenets of process algebra are highly compatible with the behavioural approach to dynamical systems. In our contribution we present an extension of classical process algebra that is suitable for the modelling and analysis of continuous and hybrid dynamical systems. It provides a natural framework for the concurrent composition of such systems, and can deal with nondeterministic behaviour that may arise from the occurrence of internal switching events. Standard process algebraic techniques lead to the characterisation of the observable behaviour of such systems as equivalence classes under some suitably adapted notion of bisimulation

    Introduction to the ISO specification language LOTOS

    Get PDF
    LOTOS is a specification language that has been specifically developed for the formal description of the OSI (Open Systems Interconnection) architecture, although it is applicable to distributed, concurrent systems in general. In LOTOS a system is seen as a set of processes which interact and exchange data with each other and with their environment. LOTOS is expected to become an ISO international standard by 1988

    Model Checking: Verification or Debugging?

    Get PDF

    Model checking embedded system designs

    Get PDF
    We survey the basic principles behind the application of model checking to controller verification and synthesis. A promising development is the area of guided model checking, in which the state space search strategy of the model checking algorithm can be influenced to visit more interesting sets of states first. In particular, we discuss how model checking can be combined with heuristic cost functions to guide search strategies. Finally, we list a number of current research developments, especially in the area of reachability analysis for optimal control and related issues

    Testing real-time multi input-output systems

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tioco-M theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtioco^M relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtioco^

    Testing multi input-output real-time systems (Extended version)

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tiocoM theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtiocoM relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtiocoM

    Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    Get PDF
    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing systems. The methodology applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation. Recent work on modelling applications from the healthcare domain is reported. One objective of this work is to explore and elaborate the proposed methodology. At the University of Twente we are developing m-health systems based on Body Area Networks (BANs). One specialization of the generic BAN is the health BAN, which incorporates a set of devices and associated software components to provide some set of health-related services. A patient will have a personalized instance of the health BAN customized to their current set of needs. A health professional interacts with their\ud patientsĀæ BANs via a BAN Professional System. The set of deployed BANs are supported by a server. We refer to this distributed system as the BAN System. The BAN system extends the enterprise computing system of the healthcare provider. Development of such systems requires a sound software engineering approach and this is what we explore with the new methodology. The methodology is illustrated with reference to recent modelling activities targeted at real implementations. In the context of the Awareness project BAN implementations will be trialled in a number of clinical settings including epilepsy management and management of chronic pain

    Model-based Testing

    Get PDF
    This paper provides a comprehensive introduction to a framework for formal testing using labelled transition systems, based on an extension and reformulation of the ioco theory introduced by Tretmans. We introduce the underlying models needed to specify the requirements, and formalise the notion of test cases. We discuss conformance, and in particular the conformance relation ioco. For this relation we prove several interesting properties, and we provide algorithms to derive test cases (either in batches, or on the fly)
    • ā€¦
    corecore