62 research outputs found

    Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase

    Get PDF
    Subcellular targeting of the components of the cAMP-dependent pathway is thought to be essential for intracellular signaling. Here we have identified a novel protein, named myomegalin, that interacts with the cyclic nucleotide phosphodiesterase PDE4D, thereby targeting it to particulate structures. Myomegalin is a large 2,324-amino acid protein mostly composed of α-helical and coiled-coil structures, with domains shared with microtubule-associated proteins, and a leucine zipper identical to that found in the Drosophila centrosomin. Transcripts of 7.5-8 kilobases were present in most tissues, whereas a short mRNA of 2.4 kilobases was detected only in rat testis. A third splicing variant was expressed predominantly in rat heart. Antibodies against the deduced sequence recognized particulate myomegalin proteins of 62 kDa in testis and 230-250 kDa in heart and skeletal muscle. Immunocytochemistry and transfection studies demonstrate colocalization of PDE4D and myomegalin in the Golgi/centrosomal area of cultured cells, and in sarcomeric structures of skeletal muscle. Myomegalin expressed in COS-7 cells coimmunoprecipitated with PDE4D3 and sequestered it to particulate structures. These findings indicate that myomegalin is a novel protein that functions as an anchor to localize components of the cAMP-dependent pathway to the Golgi/centrosomal region of the cell

    A quantum phase gate implementation for trapped ions in thermal motion

    Full text link
    We propose a novel scheme to implement a quantum controlled phase gate for trapped ions in thermal motion with one standing wave laser pulse. Instead of applying the rotating wave approximation this scheme makes use of the counter-rotating terms of operators. We also demonstrate that the same scheme can be used to generate maximally entangled states of NN trapped ions by a single laser pulse

    Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED

    Full text link
    We propose a scheme to implement the 121\to2 universal quantum cloning machine of Buzek et.al [Phys. Rev.A 54, 1844(1996)] in the context of cavity QED. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited to face the decoherence problem. That's why the requirements on the cavity quality factor can be loosened.Comment: to appear in PR

    Social preferences, accountability, and wage bargaining

    Get PDF
    We assess the extent of preferences for employment in a collective wage bargaining situation with heterogeneous workers. We vary the size of the union and introduce a treatment mechanism transforming the voting game into an individual allocation task. Our results show that highly productive workers do not take employment of low productive workers into account when making wage proposals, regardless of whether insiders determine the wage or all workers. The level of pro-social preferences is small in the voting game, while it increases as the game is transformed into an individual allocation task. We interpret this as an accountability effect

    Controlling for Prior Attainment Reduces the Positive Influence that Single-Gender Classroom Initiatives Exert on High School Students’ Scholastic Achievements.

    Get PDF
    Research points to the positive impact that gender-segregated schooling and classroom initiatives exert on academic attainment. An evaluation of these studies which reveal positive effects highlights, however, that students are typically selectively assigned to single- or mixed-gender instructional settings, presenting a methodological confound. The current study controls for students’ prior attainment to appraise the efficacy of a single-gender classroom initiative implemented in a co-educational high school in the United Kingdom. Secondary data analysis (using archived data) was performed on 266 middle-ability, 11–12 year-old students’ standardized test scores in Languages (English, foreign language), STEM-related (Mathematics, Science, Information and Communication Technology), and Non-STEM subjects (art, music, drama). Ninety-eight students (54, 55% female) were taught in single-gender and 168 (69, 41% female) in mixed-gender classrooms. Students undertook identical tests irrespective of classroom type, which were graded in accordance with U.K national curriculum guidelines. Controlling for students’ prior attainment, findings indicate that students do not appear to benefit from being taught in single-gender relative to mixed-gender classrooms in Language and STEM-related subjects. Young women benefitted from being taught in mixed-gender relative to single-gender classes for Non-STEM subjects. However, when prior ability is not controlled for, the intervention appears to be effective for all school subjects, highlighting the confounding influence of selective admissions. These findings suggest that gender-segregated classroom initiatives may not bolster students’ grades. It is argued that studies that do not control for selection effects may tell us little about the effectiveness of such interventions on scholastic achievement

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain

    Get PDF
    Abstract Background Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-HC) plays a critical role in controlling the catalytic rate. Results Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-HN) is presented. The nanomechanical properties of BH-HN emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-HN displays functional properties that are distinct from BH-HC, suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms. Conclusions The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.</p

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore