109 research outputs found

    Nonlinear acousto-electric transport in a two-dimensional electron system

    Full text link
    We study both theoretically and experimentally the nonlinear interaction between an intense surface acoustic wave and a two-dimensional electron plasma in semiconductor-piezocrystal hybrid structures. The experiments on hybrid systems exhibit strongly nonlinear acousto-electric effects. The plasma turns into moving electron stripes, the acousto-electric current reaches its maximum, and the sound absorption strongly decreases. To describe the nonlinear phenomena, we develop a coupled-amplitude method for a two-dimensional system in the strongly nonlinear regime of interaction. At low electron densities the absorption coefficient decreases with increasing sound intensity, whereas at high electron density the absorption coefficient is not a monotonous function of the sound intensity. High-harmonic generation coefficients as a function of the sound intensity have a nontrivial behavior. Theory and experiment are found to be in a good agreement.Comment: 27 pages, 6 figure

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Guidelines for the selection of appropriate remote sensing technologies for landslide detection, monitoring and rapid mapping: the experience of the SafeLand European Project.

    Get PDF
    New earth observation satellites, innovative airborne platforms and sensors, high precision laser scanners, and enhanced ground-based geophysical investigation tools are a few examples of the increasing diversity of remote sensing technologies used in landslide analysis. The use of advanced sensors and analysis methods can help to significantly increase our understanding of potentially hazardous areas and helps to reduce associated risk. However, the choice of the optimal technology, analysis method and observation strategy requires careful considerations of the landslide process in the local and regional context, and the advantages and limitations of each technique. Guidelines for the selection of the most suitable remote sensing technologies according to different landslide types, displacement velocities, observational scales and risk management strategies have been proposed. The guidelines are meant to aid operational decision making, and include information such as spatial resolution and coverage, data and processing costs, and maturity of the method. The guidelines target scientists and end-users in charge of risk management, from the detection to the monitoring and the rapid mapping of landslides. They are illustrated by recent innovative methodologies developed for the creation and updating of landslide inventory maps, for the construction of landslide deformation maps and for the quantification of hazard. The guidelines were compiled with contributions from experts on landslide remote sensing from 13 European institutions coming from 8 different countries. This work is presented within the framework of the SafeLand project funded by the European Commission’s FP7 Programme.JRC.H.7-Climate Risk Managemen

    Liver cell therapy: is this the end of the beginning?

    Get PDF
    The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Acoustoelectric Oscillations in n-InSb

    No full text

    On the interannual variability of ocean temperatures around South Georgia, Southern Ocean: forcing by El Niño/Southern Oscillation and the Southern Annular Mode

    Get PDF
    The ocean around South Georgia, in the southwest Atlantic sector of the Southern Ocean, is highly productive, with large stocks of Antarctic krill supporting extensive colonies of marine and land-based predators. The operation of this ecosystem is strongly influenced by physical forcings, and the role of the El Niño/Southern Oscillation (ENSO) phenomenon has been highlighted previously. Here we examine in detail the transmission of ENSO signals to South Georgia, and investigate other sources of interannual variability. ENSO variability generates anomalies in sea surface temperature (SST) across the South Pacific via atmospheric teleconnections. These anomalies are advected toward South Georgia within the Antarctic Circumpolar Current (ACC), and previous studies have focussed on long-period advection (order of 2-3 years) from the southwest Pacific. We observe here, however, that the region close to the Antarctic Peninsula in the southeast Pacific is especially susceptible to ENSO forcing via anomalous meridional winds; this induces SST anomalies that are advected to South Georgia on a much more rapid timescale (order 5-6 months). The phasing of these teleconnections is such that anomalies that reach the southeast Pacific from farther west tend to be reinforced here by air-sea-ice interaction. We also find an important role for the Southern Annular Mode (SAM) in determining SST variability at South Georgia. This is a circumpolar mode of climate variability, and thus can readily influence local SST at South Georgia directly. The SAM is, however, not perfectly zonally symmetric, and (like ENSO) has a particular impact on meridional winds in the southeast Pacific. The average timescale for SAM influence on South Georgia SST is shorter than that of ENSO, since it includes a stronger component of direct local forcing. The South Georgia ecosystem is not self-sustaining, with import of krill from breeding and nursery grounds upstream in the ACC being important. We speculate here that these varying meridional winds close to the Antarctic Peninsula play a direct role in promoting/restricting the injection of shelf waters (and the krill therein) into the ACC, following which anomalies in krill density would be advected toward South Georgia. This offers a dynamical mechanism that might contribute to interannual changes in biological communities at South Georgia, in addition to existing theories. Both SAM and ENSO have shown long-period changes in recent decades, with ENSO exhibiting a higher preponderance of El Niño events compared with La Niña events, and the SAM showing a marked trend toward a higher index state. Such long-period behaviour is likely to induce changes in the South Georgia ecosystem via their impacts on advection and SST, for which an understanding of the physical mechanisms elucidated here will be key to unravelling

    Fluctuations in Systems Subject to External Forces

    No full text
    corecore