472 research outputs found

    Hypercholesterolaemia and Atherosclerosis Induced in Vervet l\'lonkeys by Cholesterol-free, Semisynthetic Diets

    Get PDF
    Vervet monkeys (Cercopithecus aethiops pygerethrus) were fed diets containing 40% carbohydrate, 25% casein and 14% hydrogenated coconut oil for 6 months. Three carbohydrates were fed: glucose, fructose and sucrose. All three diets were cholesterolaemic, the most severe cholesterolaemias being observed in the fructose and sucrose groups. All diets led to aortic sudanophilia. The fructose diet resulted in the most severe atherosclerosis and sudanophilia. This study' demonstrates the feasibility of using semisynthetic, cholesterol-free diets for the induction of hyperlipaemia and atherosclerosis in monkeys

    Metabolic Syndrome Derived from Principal Component Analysis and Incident Cardiovascular Events: The Multi Ethnic Study of Atherosclerosis (MESA) and Health, Aging, and Body Composition (Health ABC).

    Get PDF
    Background. The NCEP metabolic syndrome (MetS) is a combination of dichotomized interrelated risk factors from predominantly Caucasian populations. We propose a continuous MetS score based on principal component analysis (PCA) of the same risk factors in a multiethnic cohort and compare prediction of incident CVD events with NCEP MetS definition. Additionally, we replicated these analyses in the Health, Aging, and Body composition (Health ABC) study cohort. Methods and Results. We performed PCA of the MetS elements (waist circumference, HDL, TG, fasting blood glucose, SBP, and DBP) in 2610 Caucasian Americans, 801 Chinese Americans, 1875 African Americans, and 1494 Hispanic Americans in the multiethnic study of atherosclerosis (MESA) cohort. We selected the first principal component as a continuous MetS score (MetS-PC). Cox proportional hazards models were used to examine the association between MetS-PC and 5.5 years of CVD events (n = 377) adjusting for age, gender, race, smoking and LDL-C, overall and by ethnicity. To facilitate comparison of MetS-PC with the binary NCEP definition, a MetS-PC cut point was chosen to yield the same 37% prevalence of MetS as the NCEP definition (37%) in the MESA cohort. Hazard ratio (HR) for CVD events were estimated using the NCEP and Mets-PC-derived binary definitions. In Cox proportional models, the HR (95% CI) for CVD events for 1-SD (standard deviation) of MetS-PC was 1.71 (1.54-1.90) (P < 0.0001) overall after adjusting for potential confounders, and for each ethnicity, HRs were: Caucasian, 1.64 (1.39-1.94), Chinese, 1.39 (1.06-1.83), African, 1.67 (1.37-2.02), and Hispanic, 2.10 (1.66-2.65). Finally, when binary definitions were compared, HR for CVD events was 2.34 (1.91-2.87) for MetS-PC versus 1.79 (1.46-2.20) for NCEP MetS. In the Health ABC cohort, in a fully adjusted model, MetS-PC per 1-SD (Health ABC) remained associated with CVD events (HR = 1.21, 95%CI 1.12-1.32) overall, and for each ethnicity, Caucasian (HR = 1.24, 95%CI 1.12-1.39) and African Americans (HR = 1.16, 95%CI 1.01-1.32). Finally, when using a binary definition of MetS-PC (cut point 0.505) designed to match the NCEP definition in terms of prevalence in the Health ABC cohort (35%), the fully adjusted HR for CVD events was 1.39, 95%CI 1.17-1.64 compared with 1.46, 95%CI 1.23-1.72 using the NCEP definition. Conclusion. MetS-PC is a continuous measure of metabolic syndrome and was a better predictor of CVD events overall and in individual ethnicities. Additionally, a binary MetS-PC definition was better than the NCEP MetS definition in predicting incident CVD events in the MESA cohort, but this superiority was not evident in the Health ABC cohort

    Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions.

    Get PDF
    On December 17, 2018, the North American branch of the International Life Sciences Institute (ILSI North America) convened a workshop "Can We Begin to Define a Healthy Gut Microbiome Through Quantifiable Characteristics?" with >40 invited academic, government, and industry experts in Washington, DC. The workshop objectives were to 1) develop a collective expert assessment of the state of the evidence on the human gut microbiome and associated human health benefits, 2) see if there was sufficient evidence to establish measurable gut microbiome characteristics that could serve as indicators of "health," 3) identify short- and long-term research needs to fully characterize healthy gut microbiome-host relationships, and 4) publish the findings. Conclusions were as follows: 1) mechanistic links of specific changes in gut microbiome structure with function or markers of human health are not yet established; 2) it is not established if dysbiosis is a cause, consequence, or both of changes in human gut epithelial function and disease; 3) microbiome communities are highly individualized, show a high degree of interindividual variation to perturbation, and tend to be stable over years; 4) the complexity of microbiome-host interactions requires a comprehensive, multidisciplinary research agenda to elucidate relationships between gut microbiome and host health; 5) biomarkers and/or surrogate indicators of host function and pathogenic processes based on the microbiome need to be determined and validated, along with normal ranges, using approaches similar to those used to establish biomarkers and/or surrogate indicators based on host metabolic phenotypes; 6) future studies measuring responses to an exposure or intervention need to combine validated microbiome-related biomarkers and/or surrogate indicators with multiomics characterization of the microbiome; and 7) because static genetic sampling misses important short- and long-term microbiome-related dynamic changes to host health, future studies must be powered to account for inter- and intraindividual variation and should use repeated measures within individuals

    Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function

    Absorption and Metabolism of cis-9,trans-11-CLA and of Its Oxidation Product 9,11-Furan Fatty Acid by Caco-2 Cells

    Get PDF
    Furan fatty acids (furan-FA) can be formed by auto-oxidation of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing foodstuff is consumed. Due to the presence of a furan ring structure, furan-FA may have toxic properties, however, these substances are toxicologically not well characterized so far. Here we show that 9,11-furan-FA, the oxidation product of the major CLA isomer cis-9,trans-11-CLA (c9,t11-CLA), is not toxic to human intestinal Caco-2 cells up to a level of 100 μM. Oil-Red-O staining indicated that 9,11-furan-FA as well as c9,t11-CLA and linoleic acid are taken up by the cells and stored in the form of triglycerides in lipid droplets. Chemical analysis of total cellular lipids revealed that 9,11-furan-FA is partially elongated probably by the enzymatic activity of cellular fatty acid elongases whereas c9,t11-CLA is partially converted to other isomers such as c9,c11-CLA or t9,t11-CLA. In the case of 9,11-furan-FA, there is no indication for any modification or activation of the furan ring system. From these results, we conclude that 9,11-furan-FA has no properties of toxicological relevance at least for Caco-2 cells which serve as a model for enterocytes of the human small intestine

    Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.

    Get PDF
    OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations
    corecore