110 research outputs found

    The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats

    Get PDF
    Background Dietary phosphate and protein restriction decreases plasma PTH and FGF‐23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Hypothesis Feeding a moderately protein‐ and phosphate‐restricted diet decreases PTH and FGF‐23 in healthy older cats and thereby slows progression to azotemic CKD. Animals A total of 54 healthy, client‐owned cats (≥ 9 years). Methods Prospective double‐blinded randomized placebo‐controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. Results A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF‐23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13–8.94), P = 0.92). Conclusions and Clinical Importance Feeding a moderately protein‐ and phosphate‐restricted diet has effects on calcium‐phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease

    Is nutrition important to postpone frailty?

    Get PDF
    Purpose of review: The purpose of the present study is to provide an updated, systematic review of the recent literature on whether nutrition is important to postpone frailty. Recent findings: A systematic review of recent literature (past 12 months) identified nine studies (eight of which using a cross-sectional design) exploring the relationship between nutrition and frailty. A single randomized-controlled double-blind trial was published. However, being a pilot study, it was characterized by a relatively small sample size, short follow-up length (i.e., 6 months), and low statistical power. Notably, available evidence shows considerable variability in participants’ selection and assessment methods, rendering difficult direct comparisons. Size effects or magnitude of associations across the different studies cannot also be determined. Summary: There is a need for long-term, adequately powered, randomized controlled trials examining nutrition (alone or/and in combination with other appropriate interventions) as a means for postponing frailty in older persons

    Phosphorylation of importin-α1 by CDK1-cyclin B1 controls mitotic spindle assembly

    Get PDF
    Importin-α serves as an adaptor linking importin-β to proteins carrying a nuclear localization sequence (NLS). During interphase, this interaction enables nuclear protein import, while in mitosis it regulates spindle assembly factors (SAFs) and controls microtubule nucleation, stabilization and spindle function. Here, we show that human importin-α1 is regulated during the cell cycle and is phosphorylated at two sites (threonine 9 and serine 64) during mitosis by the major mitotic protein kinase CDK1-cyclin B. Mutational analysis indicates that the mitotic phosphorylation of importin-α1 inhibits its binding to importin-β and promotes the release of TPX2 and KIFC1, which are then targeted like importin-β to the spindle. Loss of importin-α1 or expression of a non-phosphorylated mutant of importin-α1 results in the formation of shortened spindles with reduced microtubule density and induces a prolonged metaphase, whereas phosphorylation-mimicking mutants are functional in mitosis. We propose that phosphorylation of importin-α1 a general mechanism for the spatial and temporal control of mitotic spindle assembly by CDK1-cyclin B through the release of SAFs such as TPX2 and KIFC1 from inhibitory complexes that restrict spindle assembly

    Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential

    Get PDF
    The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets

    Effects of high EPA and high DHA fish oils on changes in signaling associated with protein metabolism induced by hindlimb suspension in rats

    Get PDF
    © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS. At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross-sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3-beta) and protein degradation (atrogin-1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega-6/omega-3 fatty acids and changed protein synthesis-associated signaling. EPA-rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2, and total ERK 1/2 proteins. DHA-rich fish oil attenuated the changes induced by HS on p-4EBP1 and total ERK1 levels. The effects of EPA-rich fish oil on protein synthesis signaling were more pronounced. Both EPA- and DHA-rich fish oils did not impact skeletal muscle mass loss induced by non-inflammatory HS

    γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis

    Get PDF
    γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity

    Does nutrition play a role in the prevention and management of sarcopenia?

    Full text link

    Nutrition for women

    No full text
    corecore