1,264 research outputs found

    The Relationship Between Residential Learning Communities and Student Engagement

    Get PDF
    Residential learning communities (RLCs) are residence hall environments designed to deliver academic and social benefits. For decades, many have argued RLCs are an effective means for increasing student success. Yet substantial changes in the defining characteristics of campus housing and student diversity have led to new questions about the impact of living on campus and the benefits of RLCs in particular. Consequently, we investigated the continued efficacy of RLCs as an effective educational practice. Using data from a diverse, multi-institution sample of first-year and sophomore students, this study provides insight into the relationships between RLC participation, student engagement, and perceived gains in learning

    Histone variant MacroH2A1 is downregulated in prostate cancer and influences malignant cell phenotype

    Get PDF
    Background: Prostate cancer (PCa), a major cause of cancer-related morbidity and mortality worldwide and mostly asymptomatic at earliest stages, is characterized by disruption of genetic and epigenetic balance. A better understanding of how those mechanisms orchestrate disease might improve diagnostic and prognostic tools, allowing for improvements in treatment efficacy. Replacement of canonical histones, an epigenetic mechanism, is highly conserved among species and altered expression of histones variants (e.g., MacroH2A1) has been associated with tumorigenesis. H2AFY gene encodes two isoforms of H2A histone variant MacroH2A1: MacroH2A1.1 and MacroH2A1.2. Specifically, MacroH2A1.1 isoform inhibits cell proliferation and promotes cellular differentiation. Because the contribution of this histone variant to carcinogenesis has been reported in several cancer types, but not for PCa, we aimed to investigate the contribution of MacroH2A1 for prostate carcinogenesis. Methods: MacroH2A1, MacroH2A1.1 and MacroH2A1.2 isoforms and the corresponding splicing regulators transcript levels were evaluated by RT-qPCR, in a tissue cohort composed by PCa, prostatic intraepithelial neoplasia (PIN) and normal prostate cases. Knockdown for MacroH2A1 and MacroH2A1.1 was performed through lentiviral transduction in DU145 cells, and MacroH2A1.1 overexpression was achieved in LNCaP cells by plasmid transfection, followed by functional assays. Biological and/or experimental replicates were performed when necessary, and specific statistical tests were applied to perform data analysis. Results: MacroH2A1.1 transcript levels were downregulated in PIN and primary PCa compared to normal prostate tissues. The same was found for QKI, a MacroH2A1.1's splicing regulator. Moreover, lower MacroH2A1.1 and QKI expression levels associated with less differentiated tumors (Gleason score ≥ 7). Interestingly, MacroH2A1.1, but more impressively DDX17 (AUC = 0.93; p < 0.0001) and QKI (AUC = 0.94; p < 0.0001), accurately discriminated cancerous from noncancerous prostate tissues. Furthermore, in PCa cell lines, total MacroH2A1 knockdown augmented malignant features, whereas MacroH2A1.1 overexpression impressively attenuated the malignant phenotype. Conclusions: Overall, our data, derived from primary PCa tissues and cell lines, anticipate a tumor suppressive role for MacroH2A1, particularly for the MacroH2A1.1 isoform, in prostate carcinogenesis

    Analysis of separate training and validation radical prostatectomy cohorts identifies 0.25 mm diameter as an optimal definition for "large" cribriform prostatic adenocarcinoma.

    Get PDF
    Cribriform growth pattern is well-established as an adverse pathologic feature in prostate cancer. The literature suggests "large" cribriform glands associate with aggressive behavior; however, published studies use varying definitions for "large". We aimed to identify an outcome-based quantitative cut-off for "large" vs "small" cribriform glands. We conducted an initial training phase using the tissue microarray based Canary retrospective radical prostatectomy cohort. Of 1287 patients analyzed, cribriform growth was observed in 307 (24%). Using Kaplan-Meier estimates of recurrence-free survival curves (RFS) that were stratified by cribriform gland size, we identified 0.25 mm as the optimal cutoff to identify more aggressive disease. In univariable and multivariable Cox proportional hazard analyses, size &gt;0.25 mm was a significant predictor of worse RFS compared to patients with cribriform glands ≤0.25 mm, independent of pre-operative PSA, grade, stage and margin status (p &lt; 0.001). In addition, two different subset analyses of low-intermediate risk cases (cases with Gleason score ≤ 3 + 4 = 7; and cases with Gleason score = 3 + 4 = 7/4 + 3 = 7) likewise demonstrated patients with largest cribriform diameter &gt;0.25 mm had a significantly lower RFS relative to patients with cribriform glands ≤0.25 mm (each subset p = 0.004). Furthermore, there was no significant difference in outcomes between patients with cribriform glands ≤ 0.25 mm and patients without cribriform glands. The &gt;0.25 mm cut-off was validated as statistically significant in a separate 419 patient, completely embedded whole-section radical prostatectomy cohort by biochemical recurrence, metastasis-free survival, and disease specific death, even when cases with admixed Gleason pattern 5 carcinoma were excluded. In summary, our findings support reporting cribriform gland size and identify 0.25 mm as an optimal outcome-based quantitative measure for defining "large" cribriform glands. Moreover, cribriform glands &gt;0.25 mm are associated with potential for metastatic disease independent of Gleason pattern 5 adenocarcinoma

    Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies

    Get PDF
    Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Trends in future health financing and coverage: future health spending and universal health coverage in 188 countries, 2016–40

    Get PDF
    Background: Achieving universal health coverage (UHC) requires health financing systems that provide prepaid pooled resources for key health services without placing undue financial stress on households. Understanding current and future trajectories of health financing is vital for progress towards UHC. We used historical health financing data for 188 countries from 1995 to 2015 to estimate future scenarios of health spending and pooled health spending through to 2040. Methods: We extracted historical data on gross domestic product (GDP) and health spending for 188 countries from 1995 to 2015, and projected annual GDP, development assistance for health, and government, out-of-pocket, and prepaid private health spending from 2015 through to 2040 as a reference scenario. These estimates were generated using an ensemble of models that varied key demographic and socioeconomic determinants. We generated better and worse alternative future scenarios based on the global distribution of historic health spending growth rates. Last, we used stochastic frontier analysis to investigate the association between pooled health resources and UHC index, a measure of a country's UHC service coverage. Finally, we estimated future UHC performance and the number of people covered under the three future scenarios. Findings: In the reference scenario, global health spending was projected to increase from US10trillion(9510 trillion (95% uncertainty interval 10 trillion to 10 trillion) in 2015 to 20 trillion (18 trillion to 22 trillion) in 2040. Per capita health spending was projected to increase fastest in upper-middle-income countries, at 4·2% (3·4–5·1) per year, followed by lower-middle-income countries (4·0%, 3·6–4·5) and low-income countries (2·2%, 1·7–2·8). Despite global growth, per capita health spending was projected to range from only 40(2465)to40 (24–65) to 413 (263–668) in 2040 in low-income countries, and from 140(90200)to140 (90–200) to 1699 (711–3423) in lower-middle-income countries. Globally, the share of health spending covered by pooled resources would range widely, from 19·8% (10·3–38·6) in Nigeria to 97·9% (96·4–98·5) in Seychelles. Historical performance on the UHC index was significantly associated with pooled resources per capita. Across the alternative scenarios, we estimate UHC reaching between 5·1 billion (4·9 billion to 5·3 billion) and 5·6 billion (5·3 billion to 5·8 billion) lives in 2030. Interpretation: We chart future scenarios for health spending and its relationship with UHC. Ensuring that all countries have sustainable pooled health resources is crucial to the achievement of UHC. Funding: The Bill & Melinda Gates Foundation

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    corecore