1,169 research outputs found
Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction
The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression
Sex-biased parental care and sexual size dimorphism in a provisioning arthropod
The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests.
To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest.
We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight.
Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species
Distinguishing Asthma Phenotypes Using Machine Learning Approaches.
Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies
How large should whales be?
The evolution and distribution of species body sizes for terrestrial mammals
is well-explained by a macroevolutionary tradeoff between short-term selective
advantages and long-term extinction risks from increased species body size,
unfolding above the 2g minimum size induced by thermoregulation in air. Here,
we consider whether this same tradeoff, formalized as a constrained
convection-reaction-diffusion system, can also explain the sizes of fully
aquatic mammals, which have not previously been considered. By replacing the
terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial
mammal tradeoff model accurately predicts, with no tunable parameters, the
observed body masses of all extant cetacean species, including the 175,000,000g
Blue Whale. This strong agreement between theory and data suggests that a
universal macroevolutionary tradeoff governs body size evolution for all
mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus
be attributed mainly to the increased convective heat loss is water, which
shifts the species size distribution upward and pushes its right tail into
ranges inaccessible to terrestrial mammals. Under this macroevolutionary
tradeoff, the largest expected species occurs where the rate at which
smaller-bodied species move up into large-bodied niches approximately equals
the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table
Chronic widespread bodily pain is increased among individuals with history of fracture:findings from UK Biobank
Acknowledgments This work was supported by grants from the Medical Research Council, British Heart Foundation, Arthritis Research UK, National Osteoporosis Society, International Osteoporosis Foundation, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, and NIHR Musculoskeletal Biomedical Research Unit, University of Oxford. This research has been conducted using the UK Biobank Resource. Compliance with ethical standards.Peer reviewedPublisher PD
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Improved Interpretation of Mercury Intrusion and Soil Water Retention Percolation Characteristics by Inverse Modelling and Void Cluster Analysis
This work addresses two continuing fallacies in the interpretation of percolation characteristics of porous solids. The first is that the first derivative (slope) of the intrusion characteristic of the non-wetting fluid or drainage characteristic of the wetting fluid corresponds to the void size distribution, and the second is that the sizes of all voids can be measured. The fallacies are illustrated with the aid of the PoreXpert® inversemodelling package.Anewvoid
analysis method is then described, which is an add-on to the inverse modelling package and addresses the second fallacy. It is applied to three widely contrasting and challenging porous media. The first comprises two fine-grain graphites for use in the next-generation nuclear reactors. Their larger void sizes were measured by mercury intrusion, and the smallest by
using a grand canonical Monte Carlo interpretation of surface area measurement down to nanometre scale. The second application is to the mercury intrusion of a series of mixtures of ground calcium carbonate with powdered microporous calcium carbonate known as functionalised calcium carbonate (FCC). The third is the water retention/drainage characteristic of a soil sample which undergoes naturally occurring hydrophilic/hydrophobic transitions. The first-derivative approximation is shown to be reasonable in the interpretation of the mercury intrusion porosimetry of the two graphites, which differ only at low mercury intrusion pressures, but false for FCC and the transiently hydrophobic soil. The findings are supported
by other experimental characterisations, in particular electron and atomic force microscopy
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
- …
