37 research outputs found

    SPECTROSCOPIC INVESTIGATIONS OF PHOTOINDUCED ELECTRON TRANSFER PROCESSES AT INTERFACES AND IN SOLUTION

    Get PDF
    Photoinduced electron transfer is an essential reaction in artificial solar energy conversionapplications. The challenge for decades of research has been to demonstrate a long-lived charge separated state with high energy that in principle can be used for chemical or solar-to-electric energy conversion.[1] For example, the primary energy conversion process in a dye-sensitized solar cell (DSC) is a photoinduced charge separation at the metal oxide-dye interface, making the formation and decay lifetime of the charge separated state an important aspect of these systems.[2, 3] Upon photon absorption, a surface-bound chromophore is promoted to a higher energy excited state, whereby it can undergo forward electron transfer (electron injection) to the conduction band or acceptor states in TiO2. The resultant charge separation consists of the injected electron and the oxidized dye. Following the initial charge separation step, DSCs are reliant upon regeneration of the oxidized dye by a soluble reductant present in the electrolyte. This reaction is often termed dye regeneration and is typically not optimized under operational conditions. However, pre-organized interactions between the immobilized dye and redox-active species in the electrolyte offer a method for enhancing the regeneration reaction in DSCs. Within this dissertation, several synthetic design approaches are introduced, and the corresponding electron dynamics are explored

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma

    Get PDF
    SummaryWe report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Domain coverage and criteria overlap across digital health technology quality assessments: a systematic review

    No full text
    Background: Digital health technologies (DHTs) have the potential to improve health outcomes and increase health system efficiency. However, to obtain these benefits, it is necessary to distinguish between high- and low-quality DHTs across domains such as effectiveness, clinical safety, data privacy, and usability. For this purpose, numerous DHT quality assessments have been developed. This review aimed to examine the background characteristics, domain coverage, and criteria overlap of such assessments. Methods: Assessment frameworks were identified through systematic searches of PubMed/MEDLINE, Embase and PsychINFO. Evaluation criteria of eligible assessments were extracted, and each criterion was assigned to one of twelve domains. The percentage of criteria included in each domain was compared across frameworks with different characteristics using Mann-Whitney U tests. Additionally, criteria overlap was examined among health system and government led third-party assessments. Results: The literature search identified 130 assessment frameworks that met eligibility criteria. Higher relative criteria coverage of the clinical safety and/or data privacy domains was observed for assessments that were published after, rather than in or before, 2016 (P privacy= .030), and that were developed with, rather than without, patient (P safety= .006; P privacy= .034) or healthcare professional (P safety= .005; P privacy= .015) input. Among health system and government led third-party assessments, the highest median criteria overlap was observed in the credibility domain at 78.2%, followed by the data privacy domain at 64.0%. The domains of security and technical robustness demonstrated the lowest criteria overlap at 42.1% and 30.7%, respectively. Conclusion: The observed differences in domain coverage based on stakeholder input and publication date highlight the importance of considering different perspectives and current best practices when developing and updating DHT quality assessments. Moreover, while the high criteria overlap found in some domains is encouraging, low overlap in other areas raises concerns regarding duplicated work and potential discrepancies in evaluation results, if a given DHT needs to meet varying standards across different assessments. To address these concerns, it would be beneficial for assessment owners to agree on a set of baseline criteria, which could be supplemented with separately-scored, context-specific criteria as needed. This would streamline evaluation processes and increase trust in assessment outcomes, thereby driving the adoption of high-quality DHTs and ultimately improving patient care quality and safety

    Molecular Engineering of Near Infrared Absorbing Thienopyrazine Double Donor Double Acceptor Organic Dyes for Dye-Sensitized Solar Cells

    No full text
    The thienopyrazine (TPz) building block allows for NIR photon absorption in dye-sensitized solar cells (DSCs) when used as a π-bridge. We synthesized and characterized 7 organic sensitizers employing thienopyrazine (TPz) as a π-bridge in a double donor, double acceptor organic dye design. Donor groups are varied based on electron donating strength and sterics at the donor-π bridge bond with the acceptor groups varied as either carboxylic acids or benzoic acids on the π-bridge. This dye design was found to be remarkably tunable with solution absorption onsets ranging from 750 to near 1000 nm. Interestingly, the solution absorption measurements do not accurately approximate the dye absorption on TiO<sub>2</sub> films with up to a 250 nm blue-shift of the dye absorption onset on TiO<sub>2</sub>. This shift in absorption and the effect on electron transfer properties is investigated via computational analysis, time-correlated single photon counting studies, and transient absorption spectroscopy. Structure–performance relationships were analyzed for the dyes in DSC devices with the highest performance observed at 17.6 mA/cm<sup>2</sup> of photocurrent and 7.5% PCE for a cosensitized device with a panchromatic IPCE onset of 800 nm

    Ruthenium (II) Complexes of CNC Pincers and Bipyridine in the Photocatalytic CO<sub>2</sub> Reduction Reaction to CO Using Visible Light: Catalysis, Kinetics, and Computational Insights

    No full text
    A series of five ruthenium (II) complexes containing a tridentate CNC pincer ligand, a bidentate 2,2′-bipyridine (bpy) ligand, and a monodentate ligand (chloride, bromide, or acetonitrile) were synthesized. The CNC pincer ligands used imidazole or benzimidazole-derived N-heterocyclic carbenes (NHCs) as the C donors and a 4-methoxy-substituted central pyridyl ring as the N donor. All of the complexes were characterized by analytical, spectroscopic, and single-crystal X-ray diffraction methods. These complexes were used as catalysts for visible-light-driven CO2 reduction in the presence and absence of an external photosensitizer (PS). Notably, complex 4C with a benzimidazole-derived CNC pincer ligand and bromide as the monodentate ligand was the most active catalyst tested for both sensitized and self-sensitized CO2 reduction. Thus, this catalyst was the subject of further mechanistic studies using transient absorption spectroscopy (TAS), absorption spectroelectrochemistry (SEC), and computational studies. A mechanism has been proposed for self-sensitized CO2 reduction involving (1) light excitation of the catalyst, (2) reduction by sacrificial donors, (3) halide loss, and (4) CO2 binding to form [RuCO2]+ as the catalyst resting state. The timeline for these steps and the structures of key intermediates are all supported by experimental observations (including TAS and SEC) and supporting computational studies. Subsequent steps in the cycle past [RuCO2]+ were not experimentally observable, but they are supported by computations. Experiments were also used to explain the differences observed for sensitized catalysis. Catalyst 4C is an unusually active catalyst for both sensitized and self-sensitized CO2 reduction, and thus being able to understand how it functions and which steps are turnover-limiting is an important development facilitating the design of commercially viable catalysts for solar fuel formation

    Ruthenium (II) Complexes of CNC Pincers and Bipyridine in the Photocatalytic CO<sub>2</sub> Reduction Reaction to CO Using Visible Light: Catalysis, Kinetics, and Computational Insights

    No full text
    A series of five ruthenium (II) complexes containing a tridentate CNC pincer ligand, a bidentate 2,2′-bipyridine (bpy) ligand, and a monodentate ligand (chloride, bromide, or acetonitrile) were synthesized. The CNC pincer ligands used imidazole or benzimidazole-derived N-heterocyclic carbenes (NHCs) as the C donors and a 4-methoxy-substituted central pyridyl ring as the N donor. All of the complexes were characterized by analytical, spectroscopic, and single-crystal X-ray diffraction methods. These complexes were used as catalysts for visible-light-driven CO2 reduction in the presence and absence of an external photosensitizer (PS). Notably, complex 4C with a benzimidazole-derived CNC pincer ligand and bromide as the monodentate ligand was the most active catalyst tested for both sensitized and self-sensitized CO2 reduction. Thus, this catalyst was the subject of further mechanistic studies using transient absorption spectroscopy (TAS), absorption spectroelectrochemistry (SEC), and computational studies. A mechanism has been proposed for self-sensitized CO2 reduction involving (1) light excitation of the catalyst, (2) reduction by sacrificial donors, (3) halide loss, and (4) CO2 binding to form [RuCO2]+ as the catalyst resting state. The timeline for these steps and the structures of key intermediates are all supported by experimental observations (including TAS and SEC) and supporting computational studies. Subsequent steps in the cycle past [RuCO2]+ were not experimentally observable, but they are supported by computations. Experiments were also used to explain the differences observed for sensitized catalysis. Catalyst 4C is an unusually active catalyst for both sensitized and self-sensitized CO2 reduction, and thus being able to understand how it functions and which steps are turnover-limiting is an important development facilitating the design of commercially viable catalysts for solar fuel formation
    corecore