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Fishbein et al. show that neuroendocrine tumors pheochromocytomas and paragangliomas have a low genome alteration rate but 
diverse driver alterations, which coalesce into four molecular subtypes. The Wnt-altered subtype, driven by MAML3 fusions and 
CSDE1 somatic mutations, correlates with poor clinical outcome.
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Summary

We report a comprehensive molecular characterization of pheochromocytomas and 

paragangliomas (PCC/PGLs), a rare tumor type. Multi-platform integration revealed that PCC/

PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic 

germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a 

somatically-mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, NF1). 

We also discovered fusion genes in PCC/PGL, involving MAML3, BRAF, NGFR and NF1. 

Integrated analysis classified PCC/PGLs into four molecularly-defined groups: a kinase signaling 

subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a 

cortical admixture subtype. Correlates of metastatic PCC/PGL included the MAML3 fusion gene. 

This integrated molecular characterization provides a comprehensive foundation for developing 

PCC/PGL precision medicine.

Graphical abstract
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Introduction

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are neuroendocrine tumors that 

originate from chromaffin cells and occur in the adrenal medulla (PCCs) and in sympathetic 

or parasympathetic ganglia (PGLs). Most present as benign, yet show high morbidity and 

mortality due to excessive catecholamine production, leading to hypertension, arrhythmia 

and stroke. Up to 25% are malignant (Ayala-Ramirez et al., 2011), as defined by distant 

metastases to non-chromaffin tissues. Patients with metastatic PCC/PGLs have limited 

treatment options and poor prognosis, often with less than 50% surviving at five years 

(Hescot et al., 2013). Despite a low incidence (0.8 per 100,000 for PCCs) (Beard et al., 

1983), over one-third of PCC/PGLs are associated with inherited cancer susceptibility 

syndromes, which is the highest rate among all tumor types (Dahia, 2014). Inherited 

mutations have been identified in more than 15 well-characterized genes, most commonly in 

VHL, SDHB, SDHD, NF1 and RET (Favier et al., 2015). Markers of metastatic disease are 

limited, including germline SDHB mutations, extra-adrenal location, tumor size and elevated 

plasma methoxytyramine levels (Amar et al., 2005; Ayala-Ramirez et al., 2011; Eisenhofer 

et al., 2012)

Although the inherited basis of PCC/PGLs has been well characterized, somatic profiles 

have not been well delineated. To date, limited somatic profiling has identified mutations at 

various frequencies in several genes including EPAS1 (HIF2α), RET, VHL, RAS, NF1 and 

ATRX (Burnichon et al., 2012; Burnichon et al., 2011; Cho et al., 2005; Comino-Mendez et 

al., 2013; Crona et al., 2013; Fishbein et al., 2015; Hrascan et al., 2008; Komminoth et al., 

1994; Toledo et al., 2016; Zhuang et al., 2012) and has identified recurrent somatic copy 

number alterations (Flynn et al., 2015a). Nevertheless, there is still a substantial fraction of 

Fishbein et al. Page 3

Cancer Cell. Author manuscript; available in PMC 2018 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCC/PGLs for which the etiology of tumorigenesis is not well understood. As part of The 

Cancer Genome Atlas (TCGA), we aimed to generate a comprehensive genomic 

characterization of PCC/PGLs.

Results

Patient Cohort and Molecular Analysis Strategy

Through the TCGA, we collected and analyzed a cohort of PCC/PGLs from 173 patients 

(Table S1). Fifty-seven percent of patients were female and 43% were male. The mean age 

at initial diagnosis of PCC/PGL was 47 years with a range of 19 to 83 years. Eleven patients 

(6%) had distant metastatic events. In total, 16 patients (9%) had aggressive disease events 

defined by having distant metastatic events, positive local lymph nodes or local recurrence. 

Plasma or urine biochemical testing results were available for 144 patients (83%). Clinical 

genetic testing results were available for 116 patients (67%).

To identify and characterize PCC/PGL genome alterations, tissue specimens were analyzed 

by multiple genomic assays (Table 1). Matched normal tissue and tumor specimens were 

analyzed by whole-exome sequencing for mutations and SNP arrays for copy number 

analysis. Tumor specimens were also analyzed by mRNA sequencing, miRNA sequencing, 

DNA methylation arrays and reverse phase protein arrays for targeted proteome analysis. 

Our analysis strategy involved a systematic interrogation by platform to identify genomic 

alterations in PCC/PGL, including germline mutations, somatic mutations, fusion genes and 

copy number alterations. Multi-platform integration and computational analysis was then 

performed to (1) characterize the broad molecular correlates of prominent driver alterations; 

(2) identify a PCC/PGL molecular subtype classification; (3) identify disrupted pathways; 

and (4) identify molecular discriminants of metastatic disease. The integrated clinical and 

genomic datasets are available through the NCI’s Genomic Data Commons.

Germline and Somatic Mutations

Because susceptibility gene mutations are prevalent in patients with PCC/PGLs, we first 

analyzed DNA exome sequencing of normal specimens to identify germline mutations in the 

cohort. Pathogenic germline mutations were detected within eight previously reported 

PCC/PGL susceptibility genes in 46 patients (27% of the cohort) (Figure 1; Table S2). Our 

germline mutation calls agreed with available clinical testing results. SDHB (9%), RET 
(6%), VHL (4%) and NF1 (3%) exhibited the highest rates of germline mutation. Germline 

mutations in SDHD, MAX, EGLN1 (PHD2) and TMEM127 were rare at ≤ 2% each, 

consistent with prior studies containing cohorts of predominantly PCCs (Dahia, 2014; Favier 

et al., 2015).

Turning to somatic mutations, PCC/PGLs exhibited a low somatic sequence mutation rate 

(mean 0.67 mutations per megabase) relative to other cancer types (Lawrence et al., 2013). 

Analyzing somatic mutations for recurrent, statistically significant driver genes identified 

five genes: HRAS, NF1, EPAS1, RET and CSDE1 (MutSig2 (Lawrence et al., 2013) q < 

0.05; Figure 1; Table S3). The majority of these mutations were clonal (Carter et al., 2012). 

Somatic HRAS mutations clustered at the Q61 hotspot, known to activate the MAPK 
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signaling pathway (Crona et al., 2013). Somatic EPAS1 (HIF2α) mutations occurred at 

hotspots (A530, P531, Y532) associated with increased HIF stabilization and transcriptional 

activity (Zhuang et al., 2012). Analysis for known hotspots and cancer relevant genes 

identified BRAF (p.G469A), IDH1 (p.R132C), FGFR1, VHL, ATRX, TP53, SETD2 and 

ARNT mutations.

We observed that three genes with pathogenic germline mutations also had somatic 

mutations in the cohort: RET, NF1 and VHL. RET mutations occurred in distinct protein-

coding regions with germline mutations clustered at the codon C634 in the extracellular 

domain and somatic mutations clustered at the codon M918 in the intracellular tyrosine 

kinase domain (p < 0.001; Figure 2A), similar to the pattern seen in medullary thyroid 

carcinoma (Figlioli et al., 2013). RET was significantly overexpressed in mutated tumors, 

both germline and somatic, relative to wild-type tumors (p < 0.003, Figure 2B). In contrast, 

NF1 and VHL mutations did not display positional tendencies based on somatic or germline 

origin.

Considering the genes with pathogenic germline mutations or significant somatic mutations 

(i.e. the 21 genes in Figure 1), there was striking mutual exclusivity among mutations (p < 

1e-4), indicating that tumors typically have at most one mutation in this gene set. Only four 

tumors had both germline and somatic mutations in these genes: three tumors had both 

SDHB germline and ATRX somatic mutations, a previously reported association (Fishbein 

et al., 2015), and one tumor had both RET germline (p.V804M) and somatic (p.M918T) 

mutations. Germline mutated PCC/PGLs also possessed somatic copy number events, 

indicating that these tumors are clonally derived (Figure 1). As expected, germline mutation 

in NF1, SDHB or VHL tended to co-occur with somatic copy number deletion of the 

respective locus.

This study found that the Cold shock domain–containing E1 gene (CSDE1) is significantly 

mutated in PCC/PGL. CSDE1, formerly known as UNR, is required developmentally and 

effects translation initiation, RNA stability, cell-type-specific apoptosis, differentiation and 

neuronal development (Kobayashi et al., 2013; Mihailovich et al., 2010). Four tumors 

contained CSDE1 mutations, two frameshift and two splice-site mutations, which clustered 

proximally within the gene. Analysis of tumor mRNA sequencing (Wilkerson et al., 2014) 

confirmed that both tumors with splice-site mutations had distinctive splicing alterations 

(Figure 2C). One tumor had an acceptor site mutation that resulted in intron retention and a 

truncated protein sequence (593 vs 844 amino acids) (right purple triangle in Figure 2C, 

Figure S1A). An additional tumor had a mutation in an intron donor site, resulting in 

upstream exon skipping (left purple triangle in Figure 2C, Figure S1A) and a transcript with 

a small, in-frame protein sequence truncation (789 vs 844 amino acids). Multi-platform 

integration revealed that CSDE1 mutated tumors had marked genomic deletion and 

underexpression of the gene, supporting a loss-of-function role (Figure 2D). Located at 

1p13.2, CSDE1 provides a possible target of the broad 1p deletion observed in PCC/PGL in 

addition to SDHB loss. Finally, comparing the expression profiles of CSDE1 mutant PCC/

PGLs to published microarrays of Csde1 knockout in mouse embryonic stem cells (Dormoy-

Raclet et al., 2007; Elatmani et al., 2011) revealed significant correlation, supporting the 

functional role of CSDE1 mutations in PCC/PGL (Figure S1B).
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Fusion Gene Discovery and Integrated Characterization

We then analyzed DNA focal copy number in PCC/PGLs using GISTIC2 (Mermel et al., 

2011). Many focal deletion peaks (n = 27) were detected, including NF1 (Figure 3A), as 

previously reported (Burnichon et al., 2012). In contrast, focal amplification peaks were 

sparse (n = 7). Further analysis of the focal amplifications led to a striking finding. Ten of 16 

primary tumors with focal 4q31.1 amplification also had 17q21.31 focally amplified (p < 

3e-8; Figure 3B and S2A). Analysis of fusion transcripts from RNA sequencing (Wang et 

al., 2010) revealed that seven of these 10 co-amplified tumors (p < 2e-9) possessed in-frame 

RNA fusion transcripts spanning the 5′ portion of UBTF (upstream binding transcription 

factor) on 17q21.31 and the 3′ portion of MAML3 (a member of the Mastermind-like 

family of transcriptional co-activators (McElhinny et al., 2008)) on 4q31.1. UBTF-MAML3 
fusion-positive tumors expressed one of two mutually exclusive fusion isoforms with the 

mRNA transcript starting at either exon 17 or 19 of UBTF, suggesting two different introns 

for the DNA breakpoints (Figure 3B; Table S4). RNA sequencing also identified one TCF4-

MAML3 fusion transcript, which occurred in a tumor with focal DNA co-amplification of 

TCF4 on 18q21.2 and MAML3 (Figure 3B and S2A). Using the ABRA program (Mose et 

al., 2014) to reassemble DNA exome sequencing, chimeric DNA of the UBTF-MAML3 
translocation was found in two of the mRNA fusion-positive tumors and in two additional 

tumors, including a primary/metastasis pair with the same DNA translocation break point 

(Figure 3B and Figure S2A and S2B and S2C). The sole adjacent normal tissue specimen 

from a MAML3 fusion-positive case did not contain the fusion, supporting tumor specificity. 

Providing further validation, reverse-transcription PCR of tumor RNA for the product 

spanning the UBTF-MAML3 fusion breakpoint confirmed both UBTF-MAML3 isoforms 

(Figure S2D and S2E). In all, 10 tumors were positive for a MAML3 fusion gene. The 

boundaries of UBTF DNA copy number amplification typically aligned with the fusion 

transcript location at exon 17 (Figure S2A) and the latter half of UBTF is not amplified, 

suggesting that DNA translocation preceded DNA amplification of the fusion gene. In other 

tumors, we identified an overexpressed KIAA1737-NGFR fusion gene (NGFR 3.0 fold 

overexpression vs cohort mean), an overexpressed RUNDC1-BRAF fusion gene (BRAF 5.2 

fold overexpression) and an underexpressed NF1-RAB11FIP4 fusion gene (NF1 9.9 fold 

underexpression). Interestingly, all but one of these fusion genes had a break point localized 

to 17q (Figure 3C).

The MAML3 fusion gene appears to be a gain of function event in PCC/PGL as fusion-

positive tumors substantially overexpressed MAML3 compared with fusion-negative tumors 

(2.7 fold overexpression, p< 5e-6). Furthermore, the expression pattern across the native 

exons suggests that the promoter of UBTF or TCF4 drives overexpression of MAML3, with 

the 5′ exons in UBTF or TCF4 and the 3′ exons of MAML3 overexpressed relative to 

exons not in the fusion product (Figure 3D).

Although MAML3 is conventionally known as a NOTCH transcriptional co-activator, the 

PCC/PGL MAML3 fusion genes do not contain the NOTCH binding site and PCC/PGL 

with MAML3 fusion genes do not consistently overexpress NOTCH target genes (Figure 

S3A). These results suggest that altered NOTCH signaling is not the primary consequence of 

MAML3 fusion genes, similar to another study examining a different solid tumor type with 
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exon 1 deleted MAML3 fusion genes (Wang et al., 2014). MAML3 fusion-positive tumors 

were not distinctive histologically. Searching for correlated molecular alterations that might 

point to MAML3 fusion gene functional consequences in PCC/PGL, we found fusion-

positive tumors to have a unique and expansive methylation profile relative to MAML3 
fusion-negative tumors (4,229 significant probes) (Figure 4A). The number of differentially 

methylated probes was far greater than expected by chance (352 probes; p < 0.002; Figure 

S3B). The predominant effect was hypomethylation of fusion-positive compared to fusion-

negative tumors. Among these probes, increasing hypomethylation was positively correlated 

with mRNA overexpression of corresponding target genes (p < 4e-10; Figure S3C). 

Analyzing MAML3 fusion-positive tumors by pathway analysis, we found that genes in 

developmental pathways, Wnt receptor signaling and Hedgehog signaling, were significantly 

overexpressed (Figure S3D and Figure 4B), several of which were also hypomethylated 

(Figure S3C). By miRNA analysis, the strongest marker of the fusion-positive tumors was 

an underexpression of miR-375, a negative regulator of Wnt signaling pathway member 

FZD8 (Miao et al., 2015) (Figure S3E and Figure 4B). Finally, RPPA analysis showed Wnt 

pathway members β-catenin, DVL3, and GSK3 were overexpressed in MAML3 fusion-

positive tumors (Figure 4B). This non-canonical association of MAML3 with increased 

signaling through the Wnt pathway is also supported by a study of MAML proteins in colon 

cancer cell lines (Alves-Guerra et al., 2007), describing TCF target gene activation via β-

catenin.

Recently, Heynen and colleagues found that MAML3 overexpression plays a role in retinoic 

acid resistance in neuroblastoma, a developmentally-related tumor type (Heynen et al., 

2016). These authors reported an 828 gene expression signature of MAML3 activation 

derived from a neuroblastoma cell line transfected with an exon 1 deleted MAML3 
overexpression vector compared to the untransfected parental cell line. This truncated 

MAML3 is similar to the PCC/PGL MAML3 fusion gene. The Heynen et al. signature was 

highly overexpressed in MAML3 fusion-positive PCC/PGLs compared to PCC/PGLs 

without the fusion (p < 3e-6; Figure 4C). In particular, analysis of the Heynen et al. signature 

revealed that many Wnt receptor and Hedgehog signaling genes, such as WNT4, WNT11, 

WNT5A, NKD1 and GLI2, were overexpressed after truncated MAML3 activation, whereas 

NOTCH targets were not recurrently overexpressed. Wnt and Hedgehog signaling thus, 

appear to be consequences of MAML3 activation. Finally, Heynen et al. demonstrated that 

the overexpressed MAML3 caused greater proliferation rates in the cell line model, 

suggesting that the MAML3 fusion gene may be associated with an increased growth rate in 

PCC/PGLs.

Molecular Classification

To derive a molecular classification for PCC/PGL, we performed unsupervised consensus 

clustering of tumor mRNA expression profiles (Wilkerson and Hayes, 2010), detecting four 

statistically significant expression subtypes (SigClust (Liu et al., 2008) p < 0.001; Figure 

S4A and S4B). To validate our findings, we re-analyzed an independent cohort of PCC/

PGLs (Burnichon et al., 2011) and found the same four expression subtypes, indicating that 

the subtypes are reproducible (Figure S4C and S4D). Next, we compared the expression 

subtypes by the other five genomic platforms and identified many subtype-specific 
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molecular alterations (Figure 5A and Figure S5). We designated the subtypes “kinase 

signaling,” “pseudohypoxia,” “Wnt-altered” and “cortical admixture.” Subtypes detected 

from clustering analyses of other platforms (methylation, copy number, miRNA and RPPA) 

were each significantly associated with the expression subtypes (Figure 5 and Figure S5).

The Wnt-altered subtype consisted of adrenal PCCs and overexpressed genes in the Wnt and 

Hedgehog signaling pathways, such as WNT4 and DVL3. This subtype also had the highest 

overexpression of CHGA (p < 0.002), a gene relevant to chromaffin cell function. The 

CHGA product, chromogranin A, is a clinical marker of neuroendocrine tumors and is 

known to correlate with the presence of PCC/PGL and, to a certain degree, with the presence 

of metastatic disease (Bilek et al., 2008). Strikingly, this subtype contained all tumors having 

MAML3 fusion genes (p < 4e-9) and three of four with CSDE1 mutations (p < 0.01). The 

strong associations of these alterations with an unsupervised expression subtype are 

consistent with MAML3 fusion genes and CSDE1 somatic mutations being important driver 

events. Alterations in both genes appear to be two independent routes to activate Wnt and 

Hedgehog signaling in PCC/PGL. As no mutations in germline susceptibility genes were 

observed within these tumors, the Wnt-altered subtype was specific to sporadic PCC.

The kinase signaling subtype was observed predominantly in PCCs and had the highest 

expression of PNMT, which encodes the enzyme that converts norepinephrine to 

epinephrine. PNMT expression is associated with the adrenergic phenotype of specific 

hereditary PCC/PGLs (Eisenhofer et al., 2011). This subtype had somatic and germline 

mutations in NF1, RET, TMEM127 and HRAS, as previously reported (Burnichon et al., 

2011; Castro-Vega et al., 2015), and rarer events affecting kinase signaling, including fusion 

genes involving NF1, BRAF and NGFR. This subtype, particularly the HRAS mutated 

subset, was enriched within protein expression (RPPA) cluster 3, which had increased 

expression of components of the RAS-MAPK signaling pathway and reduced expression of 

the DNA damage pathway (Figure S5A). This subtype was also enriched with DNA copy 

number cluster 2, as defined by 1p, 3q, and 17q deletions (Figure S5B). Nearly all (95%) 

NF1 germline or somatically mutated tumors also had 17q11.2 focal deletions, the vast 

majority (86%) of which occurred in the kinase signaling subtype.

The pseudohypoxia subtype consisted of both PCCs (57%) and PGLs (43%) and typically 

had negative epinephrine and metanephrine secretion. Germline mutations in SDHB, SDHD 
and VHL, and somatic mutations in VHL and EPAS1 were completely specific to this 

subtype (Figure 5A), consistent with earlier studies (Burnichon et al., 2011; Dahia et al., 

2005; Welander et al., 2014). In addition to this mutational profile, the pseudohypoxia 

subtype displayed distinctive molecular profiles on several other platforms. Most genome-

doubled tumors (74%), in which nearly all chromosomes are amplified, occurred in the 

pseudohypoxia subtype, mostly in conjunction with EPAS1 or VHL mutations (Figure 5A 

and 5B; Figure S5B). The pseudohypoxia subtype also contained two of the three 

unsupervised clusters of DNA methylation (hypermethylated and intermediate) confirming 

earlier reports (Letouze et al., 2013), with most SDHB and SDHD germline mutations 

occurring in the hypermethylated subtype and nearly all VHL and EPAS1 mutations in the 

intermediate subtype. Lastly, miRNA cluster 3 was tightly associated with the 
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pseudohypoxia subtype (Figure S5C) and displayed overexpression of mir-210, a marker of 

tumor hypoxia (Huang et al., 2009).

Finally, the cortical admixture subtype overexpressed known adrenal cortex markers 

(CYP11B1, CYP21A2 and STAR) (Figure 5A). Given this, our expert pathologist re-

analyzed all tumors to determine the presence of any cortical cells within the sample. A 

significant (p < 5e-5) association with the presence of cortical cells was found with this 

expression subtype (Figure S6A), otherwise histological features did not differentiate the 

expression subtypes. Tumors in this subtype had reduced tumor purity, determined from 

DNA analysis (Carter et al., 2012), and elevated leukocyte infiltration determined from DNA 

methylation profiles (Figure 5A). Thus, these findings suggest the possibility of impure 

tumor sampling. Next, we evaluated possible similarity of this subtype to adrenal cortex 

tissue by performing unsupervised mRNA and DNA methylation analysis on the pool of 

PCC/PGL tumors, available adjacent normal tissue specimens of the adrenal cortex, and 

TCGA adrenocortical carcinomas (Zheng et al., 2016). By mRNA analysis the cortical 

admixture subtype tumors overexpressed both PCC/PGL markers and adrenal cortex 

markers (Figure S6B). By DNA methylation analysis, cortical admixture subtype tumors 

typically exhibited the PCC/PGL methylation profile and not the normal adrenal cortex or 

adrenocortical carcinoma profiles (Figure S6C). Thus, the cortical admixture tumors have 

molecular features of PCC/PGL and are not merely defined by adrenal cortex molecular 

features alone. In addition, both germline mutations in MAX occurred in the cortical 

admixture subtype (p < 0.032), supporting a distinct underlying biology. MAX mutation 

associated PCCs have been reported to contain multiple tumor foci within one adrenal gland 

(Burnichon et al., 2012). We hypothesize that multi-focal disease associated with MAX 
mutations also may explain the presence of interspersed cortical cells in the cortical 

admixture subtype.

Pathway Analysis

Careful manual review of the somatic and germline alterations identified signaling pathways 

that were disrupted in PCC/PGLs: the kinase and hypoxia signaling pathways, Krebs cycle/

electron transport, and Wnt signaling (Figure 6). The kinase signaling pathway contained 

alterations in NF1, HRAS and RET, as previously reported (Burnichon et al., 2011), and we 

now expand this set with alterations in BRAF, FGFR, NGFR and subunits of cAMP-

dependent protein kinase A (PKA). Mutations in the subunits of PKA have been implicated 

in other adrenal pathologies; notable examples are PRKAR1A in Carney complex and 

PRKACA in adrenocortical carcinoma (Berthon et al., 2015). Within the hypoxia signaling 

pathway, we found mutually exclusive mutations in interacting proteins, including VHL, 

ANRT (HIF1β), EPAS1 (HIF2α) and EGLN1 (PHD2). Disruption of the hypoxia signaling 

pathway leads to a state of pseudohypoxia that drives cell proliferation. Many tumors had 

mutations in the Krebs cycle genes SDHB and SDHD, as expected, and one had an IDH1 
mutation. The SDHx and IDH mutations are predicted to impair glucose consumption and 

metabolism leading to inhibition of 2-oxoglutarate-dependent histone and DNA demethylase 

enzymes, resulting in epigenetic silencing (Yang and Pollard, 2013). Several genes in the 

Wnt signaling pathway were altered, with MAML3 being the most common (Alves-Guerra 

et al., 2007). We also found mutations in ATRX, often with concurrent SDHB mutations. 
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ATRX mutations have been previously reported in conjunction with mutations in IDH1 (Jiao 

et al., 2012) and SDHB (Fishbein et al., 2015), suggesting that they are synergistic in tumor 

development.

Clinical outcome associations

As it is both clinically important and challenging to distinguish malignant from benign PCC/

PGL, we sought to identify molecular features associated with negative clinical events. 

Aggressive-disease-free-survival (ADFS), the time until the occurrence of either distant 

metastases, local recurrence or positive regional lymph nodes, was significantly associated 

with nine molecular markers (Figure 7). Markers associated with poor ADFS included 

MAML3 fusion gene, SDHB germline mutation, somatic mutation in SETD2 or ATRX, high 

somatic mutation total, the Wnt-altered and pseudohypoxia expression subtypes, and the 

hypermethylated subtype. In contrast, plasma and/or urine metanephrine and epinephrine 

positivity, the kinase signaling expression subtype and the low-methylated subtype were 

associated with longer ADFS. Analysis of metastatic-free-survival (MFS), the time until 

occurrence of distant metastases, resulted in significant associations for seven of the nine 

prior markers, all except mRNA subtype and epinephrine positivity, and no additional 

markers. Analysis of Ki-67 protein expression by immunohistochemistry in a subset of PCC/

PGLs (n = 62) was found to positively correlate with metastatic disease (Figure S7A–C). 

Interestingly, the tumor with the highest Ki-67 expression was MAML3 fusion-positive 

(Figure S7D). In summary, our analysis confirmed SDHB germline mutations, ATRX 
somatic mutations and Ki-67 expression as clinical outcome markers (Ayala-Ramirez et al., 

2011; Dahia, 2014; Fishbein et al., 2015) and identified seven additional molecular markers 

for clinical outcome, including the MAML3 fusion gene.

Discussion

We report a comprehensive molecular profiling with six platforms to characterize the 

molecular basis of PCC/PGLs. We identified a driver mutation, fusion gene, or copy number 

alteration in a majority of PCC/PGLs (95%), thus explaining the molecular etiology of most 

of the cohort. We report several additional driver alterations in PCC/PGL including CSDE1 
mutations and MAML3 fusion genes. In particular, this study identified recurrent DNA 

translocation and fusion genes as a component of PCC/PGL tumorigenesis. The mechanisms 

underlying PCC/PGLs are astonishingly diverse, with both inherited and somatic drivers 

influencing tumorigenesis through a broad range of biological pathways. This heterogeneity 

is elegantly captured in the four expression subtypes, with the Wnt-altered and cortical 

admixture subtypes extending previous classifications. Finally, our analysis expanded 

markers of aggressive disease, including MAML3 fusion genes.

Based on our results, MAML3 fusion genes are an important molecular alteration in 

PCC/PGL tumorigenesis. The tumors with MAML3 fusions lacked other driving alterations 

and were associated with a specific expression subtype, Wnt pathway activation, DNA 

hypomethylation and poor clinical outcome. The DNA hypomethylation profile may be a 

consequence of widespread, aberrant MAML3 binding to the genome and promoting gene 

expression. This hypothesis is supported by these tumors’ inverse correlation of methylation 
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and gene expression at the same loci. Although our data supports that MAML3 is the target 

of the fusion event, we cannot exclude tumorigenic properties specifically conferred by the 

upstream fusion partners, UBTF or TCF4.

Fusion genes involving mastermind family members have been reported in other tumor types 

(Amelio et al., 2014; Enlund et al., 2004; Wang et al., 2014). In biphenotypic sinonasal 

sarcoma, PAX3-MAML3 fusion genes had the same MAML3 breakpoint as in PCC/PGL 

and were not associated with increased expression of NOTCH target genes (Wang et al., 

2014). On the other hand, the CRTC1-MAML2 fusion gene in mucoepidermoid carcinomas 

did affect NOTCH signaling (Enlund et al., 2004) and also had a gain-of-function interaction 

with Myc (Amelio et al., 2014), consistent with MYC overexpression in MAML3 fusion-

positive PCC/PGLs. Future work may illuminate whether mastermind fusions in other tumor 

types lead to Wnt signaling pathway upregulation.

Truncating mutations in CSDE1 emerged as a driver of PCC/PGL tumorigenesis, with 

integrated analysis indicating a tumor suppressor role. To our knowledge, CSDE1 has not 

been described as a driver gene in any cancer type nor been previously associated with the 

Wnt signaling pathway. Querying a cancer mutation a database (Cerami et al., 2012) for 

CSDE1 returned rare truncating mutations in other tumor types, suggesting that CSDE1 may 

have a driver role in other cancers.

Our results provide significant, clinically-relevant information by confirming and identifying 

several molecular markers — including germline mutations in SDHB, somatic mutations in 

ATRX and fusions involving MAML3 — that were associated with an increased risk of 

aggressive and metastatic disease. The molecular alterations described herein also may serve 

as potential drug targets. For example, SDH-mutant tumors have high levels of glutamine, 

and glutaminase inhibitors (Gross et al., 2014) are currently being evaluated in 

NCT02071862. As the MAML3 fusion genes activate Wnt signaling, downstream inhibitors, 

such as antagonists of β-catenin (PRI-274) (Lenz and Kahn, 2014) and STAT3 (BB1608), 

merit investigation. Cancers with alternative lengthening of telomeres associated with loss of 

ATRX have been shown to be sensitive to ATR inhibitors (Flynn et al., 2015b). Finally, 

FDA-approved targeted therapies are available for patients whose tumors carry VHL, RET, 
BRAF, EPAS1 and FGFR1 mutations. In summary, our comprehensive characterization 

significantly advances the molecular understanding of PCC/PGLs and enables the 

advancement of precision medicine for this rare disease.

Experimental Procedures

Samples and clinical data

PCC/PGL tumor tissue, normal tissue and blood samples were obtained from patients with 

informed consent and with approval from local institutional review boards (IRB) at tissue 

source sites (see Supplemental Experimental Procedures). Cases with neoadjuvant treatment 

were excluded. Head and neck PGLs were not included because such tumors are often 

embolized prior to surgery leaving excessive necrotic tumor tissue that is insufficient for 

molecular analysis. Adjacent normal tissues were at least two cm away from the tumor, 

mostly in the adrenal cortex. An expert endocrine pathologist (A. S. T.) reviewed frozen 
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sections to confirm PCC/PGL diagnosis and to determine the presence of any cortical cells 

in the tissue.

Clinical records were analyzed by an expert subcommittee to assign clinical outcome events 

by consensus definitions. Tissue source sites were contacted to clarify ambiguities when 

needed. Metastatic events were defined as the occurrence of distant metastases in anatomical 

locations where chromaffin tissue is not normally present, as per WHO definition (DeLellis 

et al., 2004). Aggressive disease events were defined by the occurrence of distant metastases, 

positive regional lymph nodes, or local recurrence. In total, 16 cases were clinically 

aggressive with 11 cases having distant metastases.

Molecular Analysis

All tumors were processed for DNA and RNA using the AllPrep kit (Qiagen). Tissue 

specimens were assayed by DNA exome sequencing, mRNA sequencing, DNA methylation 

microarrays, microRNA (miRNA) sequencing, DNA copy number microarrays and reverse 

phase protein arrays (RPPA). Analysis details are described in the Supplemental 

Experimental Procedures section. Data are available at https://gdc.cancer.gov/ and https://

tcga-data.nci.nih.gov/docs/publications/pcpg_2016.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Pheochromocytomas and paragangliomas (PCC/PGLs) are rare neuroendocrine tumors 

with a unique genetic background and few options for treating metastatic disease. 

Comprehensive molecular analysis revealed that PCC/PGLs have a low genome 

alteration rate with a remarkable diversity of driver alterations including germline and 

somatic mutations, and somatic fusion genes. This diversity coalesced into molecular 

subtypes, including the discovery of a Wnt-altered subtype driven by MAML3 fusion 

gene and CSDE1 somatic mutation. This subtype correlates with poor clinical outcome, 

providing opportunities for molecular diagnosis and prognosis in patients. The diversity 

of single drivers among PCC/PGL makes these tumors a model for future targeted 

therapy and pan-cancer molecular etiology research.
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Highlights

• Comprehensive molecular profiling of 173 pheochromocytoma and 

paraganglioma tumors.

• Single drivers in tumors by germline mutation, somatic mutation, or fusion 

gene.

• MAML3 fusion gene and CSDE1 somatic mutation define a Wnt-altered 

subtype.

• Prognostic markers of metastatic disease include the MAML3 fusion gene.
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Figure 1. Germline and Somatic Genome Alterations
Genomic features in rows and primary tumors (n = 173) in columns; shading indicates the 

effect of a mutation on protein sequence. Significant somatically mutated genes (MutSig2, q 

< 0.05) indicated by an asterisk (*).

See also Table S1 and S2 and S3.
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Figure 2. Integrated Alterations in RET and in CSDE1
(A) Location of somatic and germline RET mutations within the protein sequence.

(B) RET mRNA expression of mutation positive (+) and mutation negative (−) tumors. 

Boxplot horizontal lines indicate 25th, 50th, and 75th percentiles, lines extend to the furthest 

point less than or equal to 1.5 times the interquartile range. Points indicate primary tumors, 

with horizontal jitter added to aid visualization.

(C) Mutations within CSDE1 gene structure.

(D) Association of CSDE1 mRNA expression versus CSDE1 DNA copy number, points 

represent primary tumors.

See also Figure S1.
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Figure 3. Detection of Fusion Genes
(A) Focal copy number amplifications and deletions from GISTIC analysis.

(B) DNA copy number alterations at the TCF4, UBTF and MAML3 loci for tumors with 

MAML3 amplification; rectangles indicate DNA breakpoints with shading proportional to 

DNA copy number. mRNA or DNA fusion sequence positivity indicated by “+”.

(C) Circos diagram of mRNA fusion genes. Color denotes fusion mates.

(D) Exon expression diagrams for representative tumors from each MAML3 fusion gene 

species. Colors indicate relative differential expression across exons. Orange arrows indicate 

fusion breakpoints and exon number.

See also Table S2 and S4 and Figure S2.
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Figure 4. Molecular correlates of MAML3 fusion
(A) Differentially methylated probes among tumors by MAML3 fusion status.

(B) Log2 ratios for select mRNA, miRNA and DNA methylation markers (false-discovery 

rate [FDR] < 0.05). Log2 ratios for select RPPA markers (Kruskal-Wallis tests: β-catenin p < 

0.022, GSK3 p < 0.14, DVL3 p < 0.18). GSK3 refers to both GSK3α and GSK3β because 

the antibody used interacts with both. For display, RPPA expression were increased by the 

minimum value of each marker to provide positive values for the log2 ratio calculation. 

Log2 ratios calculated using primary tumors. Arrows indicate regulatory relationships, i.e. 

methylation within a particular gene region or a miRNA binding partner.

(C) Expression scores based on published MAML3 signature (Heynen et al., 2016). (See 

Supplemental Procedures). Boxplot horizontal lines indicate 25th, 50th, and 75th percentiles, 
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lines extend to furthest point less than or equal to 1.5 times the interquartile range. Points 

indicate primary tumor values, with horizontal jitter added to aid visualization.

See also Figure S3.
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Figure 5. Integrated Molecular Subtypes
(A) mRNA subtypes. Primary tumors (n = 173) appear in columns, and clinical and genomic 

features displayed in rows. Categorical features analyzed using Fisher’s exact tests; 

continuous features were analyzed using Kruskal-Wallis tests. Select differentially expressed 

genes displayed below each subtype.

(B) DNA copy number (Carter et al., 2012) clustering. Primary tumors are columns (n = 

173).

(C) DNA methylation clustering. Primary tumors (n = 173) appear in columns. Features 

tested for association with methylation subtypes by same method as in (A).
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(D) Ring plot displaying cross-platform subtype association. p prefers to chi-square tests on 

platform subtype vs mRNA expression subtype.

See also Table S2 and Figures S4 and S5 and S6.
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Figure 6. Recurrently Altered Pathways
Selected pathways recurrently altered by germline mutations, non-silent somatic variants 

and somatic fusion genes. Pathway heading percentages reflect alteration rate in the cohort 

(n = 173). Box shading reflects the alteration rate, with red – activating and blue – 

inactivating. Protein alteration frequencies and percentages displayed within the respective 

boxes. Grey boxes have alteration rates ≤ 1%. Succ – succinate; iso – isocitrate; fum – 

fumarate; 2OG – 2-oxogluterate.
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Figure 7. Molecular Discriminants of Clinical Outcome
Primary tumors are columns (n = 173). Molecular and clinical features are rows. Somatic 

mutation total is the number of somatic mutations in a tumor. Marker and outcome 

associations were determined by log rank tests (p).

See also Figure S7.
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Table 1

Summary of Data Types

Data Type Platforms Cases (n) Data Access

TCGA Core Sample Set (n = 173 total cases)

Whole-exome DNA sequencing Illumina; SureSelect v2 173 controlled: BAM files
open: somatic mutations

DNA copy number Affymetrix SNP 6.0 173 controlled: CEL files
open: copy number

mRNA sequencing Illumina 173 controlled: BAM files
open: expression

miRNA sequencing Illumina 173 controlled: BAM files
open: expression

CpG DNA methylation Illuminia Infinium HM 450 173 open

Reverse phase protein array Aushon Biosystems 2470; CanoScan 9000F  76 open

Cancer Cell. Author manuscript; available in PMC 2018 February 13.


	Summary
	Graphical abstract
	Introduction
	Results
	Patient Cohort and Molecular Analysis Strategy
	Germline and Somatic Mutations
	Fusion Gene Discovery and Integrated Characterization
	Molecular Classification
	Pathway Analysis
	Clinical outcome associations

	Discussion
	Experimental Procedures
	Samples and clinical data
	Molecular Analysis

	Consortia
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

