106 research outputs found
Dynamic scaling for 2D superconductors, Josephson junction arrays and superfluids
The value of the dynamic critical exponent is studied for two-dimensional
superconducting, superfluid, and Josephson Junction array systems in zero
magnetic field via the Fisher-Fisher-Huse dynamic scaling. We find
, a relatively large value indicative of non-diffusive
dynamics. Universality of the scaling function is tested and confirmed for the
thinnest samples. We discuss the validity of the dynamic scaling analysis as
well as the previous studies of the Kosterlitz-Thouless-Berezinskii transition
in these systems, the results of which seem to be consistent with simple
diffusion (). Further studies are discussed and encouraged.Comment: 19 pages in two-column RevTex, 8 embedded EPS figure
Cognitive Information Processing
Contains research objectives and summary of research on fourteen research projects and reports on four research projects.Joint Services Electronics Program (Contract DAAB07-75-C-1346)National Science Foundation (Grant EPP74-12653)National Science Foundation (Grant ENG74-24344)National Institutes of Health (Grant 2 PO1 GM19428-04)Swiss National Funds for Scientific ResearchM.I.T. Health Sciences Fund (Grant 76-11)National Institutes of Health (Grant F03 GM58698)National Institutes of Health (Biomedical Sciences Support Grant)Associated Press (Grant
Metatranscriptomics and Pyrosequencing Facilitate Discovery of Potential Viral Natural Enemies of the Invasive Caribbean Crazy Ant, Nylanderia pubens
BACKGROUND: Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. METHODOLOGY AND PRINCIPAL FINDINGS: Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. CONCLUSIONS: Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest
Genome Sequence of the Pea Aphid Acyrthosiphon pisum
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems
Conservation Genomic Analysis Reveals Ancient Introgression and Declining Levels of Genetic Diversity in Madagascar’s Hibernating Dwarf Lemurs
Madagascar’s biodiversity is notoriously threatened by deforestation and climate change. Many of these organisms are rare, cryptic, and severely threatened, making population-level sampling unrealistic. Such is the case with Madagascar’s dwarf lemurs (genus Cheirogaleus), the only obligate hibernating primate. We here apply comparative genomic approaches to generate the first genome-wide estimates of genetic diversity within dwarf lemurs. We generate a reference genome for the fat-tailed dwarf lemur, Cheirogaleus medius, and use this resource to facilitate analyses of high-coverage (~30×) genome sequences for wild-caught individuals representing species: C. sp. cf. medius, C. major, C. crossleyi, and C. sibreei. This study represents the largest contribution to date of novel genomic resources for Madagascar’s lemurs. We find concordant phylogenetic relationships among the four lineages of Cheirogaleus across most of the genome, and yet detect a number of discordant genomic regions consistent with ancient admixture. We hypothesized that these regions could have resulted from adaptive introgression related to hibernation, indeed finding that genes associated with hibernation are present, though most significantly, that gene ontology categories relating to transcription are over-represented. We estimate levels of heterozygosity and find particularly low levels in an individual sampled from an isolated population of C. medius that we refer to as C. sp. cf. medius. Results are consistent with a recent decline in effective population size, which is evident across species. Our study highlights the power of comparative genomic analysis for identifying species and populations of conservation concern, as well as for illuminating possible mechanisms of adaptive phenotypic evolution
- …